(

Continued Fractions in Local Fields, II

Author(s): Jerzy Browkin
Source: Mathematics of Computation, Vol. 70, No. 235, (Jul., 2001), pp. 1281-1292
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2698813
Accessed: 18/04/2008 17:36

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

CONTINUED FRACTIONS IN LOCAL FIELDS, II

JERZY BROWKIN

Abstract

The present paper is a continuation of an earlier work by the author. We propose some new definitions of p-adic continued fractions. At the end of the paper we give numerical examples illustrating these definitions. It turns out that for every $m, 1<m<5000,5 \nmid m$ if $\sqrt{m} \in \mathbb{Q}_{5} \backslash \mathbb{Q}$, then \sqrt{m} has a periodic continued fraction expansion. The same is not true in \mathbb{Q}_{p} for some larger values of p.

1. Introduction

There are two nonequivalent definitions of continued fractions in the field \mathbb{Q}_{p} of p-adic numbers: the definition of T. Schneider ([Sch], 1968) and the definition of A.A. Ruban ([Ru], 1970) modified by the author ([Br], 1978) and rediscovered by L.X. Wang ([Wa1], 1985).

In the first definition we consider continued fractions of the form (we assume for simplicity that $p>2$, and $v(\alpha)=0$, where v is the p-adic valuation, and $\alpha \in \mathbb{Q}_{p}$)

$$
\alpha=b_{0}+\frac{a_{0}}{b_{1}+\frac{a_{1}}{b_{2}+\cdots}}
$$

where $b_{j} \in\{1,2, \ldots, p-1\}, a_{j}=p^{\alpha_{j}}, \alpha_{j} \geq 1$, for $j \geq 0$.
In the second definition we assume that $a_{j}=1$ for $j \geq 0$, and

$$
b_{j} \in \mathbb{Z}\left[\frac{1}{p}\right] \cap(0, p) \quad \text { in }[\mathrm{Ru}], \quad \text { and } \quad b_{j} \in \mathbb{Z}\left[\frac{1}{p}\right] \cap\left(-\frac{p}{2}, \frac{p}{2}\right) \quad \text { in }[\mathrm{Br}] .
$$

Moreover, $v\left(b_{0}\right)=0$ and $v\left(b_{j}\right)<0$ for $j \geq 1$. The precise definition is given in Algorithm I below. The following natural elementary questions arise:

1. Can every $\alpha \in \mathbb{Q}_{p}$ be written uniquely as a finite or infinite continued fraction?
2. Can every rational number $\alpha \in \mathbb{Q}$ be written as a finite continued fraction? If not, determine those infinite continued fractions which correspond to rational numbers.
3. Can every $\alpha \in \mathbb{Q}_{p}$ quadratic over \mathbb{Q} be written as a periodic continued fraction?
The answers are as follows:
4. Yes, it follows easily from both definitions.

[^0]2. No, for the definitions in $[\mathrm{Sch}]$ and $[\mathrm{Ru}]$; yes, for the definition in [Br$]$. Infinite continued fractions corresponding to rational numbers have been described in [Bu] for Schneider continued fractions, and in [La] and [Wa1] for Ruban ones.
3. No, in general. For some particular α 's the continued fraction is periodic.

There are several papers devoted to periodicity, e.g., [Beck], [Be 1$],[\mathrm{Be} 2],[\mathrm{Be} 3]$, [Be4], [Br], [Bu], [Dea], [La], [Ti], [Wa1], [We1], [We2].
B.M.M. de Weger [We1] has modified question 3 as follows. To every $\alpha \in \mathbb{Q}_{p}$, he attached a sequence of approximation lattices, and he proved that $\alpha \in \mathbb{Q}_{p}$ is quadratic over \mathbb{Q} iff the corresponding sequence of approximation lattices is periodic. He remarked (see [We1], p.70), "... it seems that a simple and satisfactory p-adic continued fraction algorithm does not exist."

In the present paper we propose some new definitions of p-adic continued fractions. It seems that they are more satisfactory than earlier ones, since for many $\alpha \in \mathbb{Q}_{p}$, quadratic over \mathbb{Q}, the continued fraction in the new sense is periodic. See the numerical examples in Section 4.

2. Definitions

First we recall the definition of A.A. Ruban $[\mathrm{Ru}]$ and its modification $[\mathrm{Br}]$. We assume for simplicity that p is an odd prime number. Let $\mathcal{R} \subset \mathbb{Q}$ be a set of representatives modulo p such that $0 \in \mathcal{R}$. Then every $\alpha \in \mathbb{Q}_{p}$ can be written uniquely in the form

$$
\begin{equation*}
\alpha=\sum_{n=r}^{\infty} a_{n} p^{n} \tag{1}
\end{equation*}
$$

where $r \in \mathbb{Z}, a_{n} \in \mathcal{R}$, for $n \geq r$ and $a_{r} \neq 0$ if $\alpha \neq 0$. Then $v(\alpha)=r$, where v is the p-adic valuation.

We define the mapping (integral part) $s: \mathbb{Q}_{p} \longrightarrow \mathbb{Q}$ as follows. For α given by (1) let

$$
s(\alpha)=\sum_{n=r}^{0} a_{n} p^{n} .
$$

In particular we can take $\mathcal{R}=\{0,1, \ldots, p-1\}$ (see $[\mathrm{Ru}]$) or $\mathcal{R}=\left\{-\frac{p-1}{2}, \ldots,-1,0\right.$, $\left.1, \ldots, \frac{p-1}{2}\right\}$ (see $[\mathrm{Br}]$). In the present paper we choose the second possibility. Then $s\left(\mathbb{Q}_{p}\right)=\mathbb{Z}\left[\frac{1}{p}\right] \cap\left(-\frac{p}{2}, \frac{p}{2}\right)$.

Now we can proceed as in the classical definition of continued fractions in \mathbb{R}.
Algorithm I.
For a given $\alpha \in \mathbb{Q}_{p}$, we define inductively (finite or infinite) sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ as follows.

Let $a_{0}=\alpha$ and $b_{0}=s(\alpha)$.
If $b_{0}=a_{0}$, then a_{1} and b_{1} are not defined.
If $b_{0} \neq a_{0}$, then let $a_{1}=\left(a_{0}-b_{0}\right)^{-1}$ and $b_{1}=s\left(a_{1}\right)$.
If a_{j}, b_{j} are defined for $j=0,1, \ldots, k$ and $b_{k}=a_{k}$, then a_{k+1} and b_{k+1} are not defined.

If $b_{k} \neq a_{k}$, then let $a_{k+1}=\left(a_{k}-b_{k}\right)^{-1}$ and $b_{k+1}=s\left(a_{k+1}\right)$.
We call the sequence (b_{n}) the p-adic continued fraction of α.
From the definition of the mapping s it follows that $v(\beta-s(\beta))>0$ for every $\beta \in \mathbb{Q}_{p}$, and hence $v\left(b_{n}\right)<0$ for $n \geq 1$.

For an arbitrary sequence $\left(b_{n}\right)$, where $b_{n} \in s\left(\mathbb{Q}_{p}\right)$, and $v\left(b_{n}\right)<0$, for $n \geq 1$, we define the partial quotients

$$
\frac{A_{n}}{B_{n}}=\left[b_{0} ; b_{1}, \ldots, b_{n}\right] \quad(n=0,1, \ldots)
$$

as usual:

$$
\begin{array}{ll}
A_{0}=b_{0}, & A_{1}=b_{0} b_{1}+1, \\
A_{n}=b_{n} A_{n-1}+A_{n-2}, \text { for } n \geq 2 \\
B_{0}=1, & B_{1}=b_{1},
\end{array} B_{n}=b_{n} B_{n-1}+B_{n-2}, \text { for } n \geq 2 . ~ \$
$$

If the sequence $\left(b_{n}\right)$ is infinite, then the sequence $\left(A_{n} / B_{n}\right)$ is convergent, and moreover if $\left(b_{n}\right)$ was obtained by the above algorithm applied to $\alpha \in \mathbb{Q}_{p}$, then $\lim \left(A_{n} / B_{n}\right)=\alpha$. In this case we use the notation $\alpha=\left[b_{0} ; b_{1}, \ldots\right]$.

For the proofs see $[\mathrm{Br}]$.

3. Some new algorithms

Now we present some new definitions of p-adic continued fractions.
Lemma 1. Let an infinite sequence $\left(b_{n}\right)$ satisfy

$$
\begin{cases}b_{n} \in \mathbb{Z}\left[\frac{1}{p}\right], & \text { for } n \geq 0 \tag{3}\\ v\left(b_{2 n}\right)=0, & \text { for } n>0 \\ v\left(b_{2 n+1}\right)<0, & \text { for } n \geq 0\end{cases}
$$

and let $\frac{A_{n}}{B_{n}}$ be the n-th partial quotient corresponding to the sequence $\left(b_{n}\right)$.
Then the sequence $\frac{A_{n}}{B_{n}}$ is convergent to a p-adic number α. We have $v(\alpha) \geq 0$ provided $v\left(b_{0}\right) \geq 0$.
Proof. 1) We prove by induction that $B_{n} \neq 0$ and $v\left(B_{n}\right) \leq v\left(B_{n-1}\right)$, for every $n \geq 0$, and that the equality holds iff n is even.

Since $B_{0}=1, B_{1}=b_{1}$, then $v\left(B_{0}\right)=0>v\left(b_{1}\right)=v\left(B_{1}\right)$, by the assumption. Consequently $B_{1} \neq 0$.

Suppose that

$$
\begin{equation*}
B_{n-1} \neq 0 \quad \text { and } \quad v\left(B_{n-1}\right) \leq v\left(B_{n-2}\right) \quad \text { for some } n \geq 2 \tag{4}
\end{equation*}
$$

and that the equality holds iff n is odd.
In view of (3) and (4) we have

$$
v\left(b_{n} B_{n-1}\right)=v\left(B_{n-1}\right)<v\left(B_{n-2}\right) \text { for } n \text { even }
$$

and

$$
v\left(b_{n} B_{n-1}\right)<v\left(B_{n-1}\right)=v\left(B_{n-2}\right) \quad \text { for } n \text { odd }
$$

Thus in both cases $v\left(b_{n} B_{n-1}\right)<v\left(B_{n-2}\right)$, and hence in view of $B_{n}=b_{n} B_{n-1}+$ B_{n-2} we get

$$
\begin{aligned}
v\left(B_{n}\right) & =\min \left(v\left(b_{n} B_{n-1}\right), v\left(B_{n-2}\right)\right) \\
& =v\left(b_{n} B_{n-1}\right) \quad \begin{cases}=v\left(B_{n-1}\right) & \text { for } n \text { even } \\
<v\left(B_{n-1}\right) & \text { for } n \text { odd }\end{cases}
\end{aligned}
$$

Consequently $v\left(B_{n}\right)<0$, hence $B_{n} \neq 0$.
By induction the claim follows.
2) From the first part of the proof we get $\lim B_{n}^{-1}=0$. The well-known formula

$$
\frac{A_{n+1}}{B_{n+1}}-\frac{A_{n}}{B_{n}}=\frac{(-1)^{n}}{B_{n+1} B_{n}}
$$

implies that $\left(\frac{A_{n}}{B_{n}}\right)$ is a Cauchy sequence. Hence it is convergent in \mathbb{Q}_{p}.
We shall prove that every p-adic number α can be written in the form $\alpha=$ $\left[b_{0} ; b_{1}, \ldots\right]$ for some finite or infinite sequence $\left(b_{n}\right)$ satisfying (3). Of course such a representation is not unique. To get the uniqueness it is necessary to make some further restrictions on the sequence $\left(b_{n}\right)$, e.g., such as stated in the algorithms below.

For $\alpha \in \mathbb{Q}_{p}$ given by (1) let

$$
s_{1}(\alpha)=s(\alpha)=\sum_{n=r}^{0} a_{n} p^{n} \quad \text { and } \quad s_{1}^{\prime}(\alpha)=s_{1}(\alpha)-p \cdot \operatorname{sign}\left(s_{1}(\alpha)\right) .
$$

If $\alpha \in \mathbb{Q}_{p} \backslash p \mathbb{Z}_{p}$, then $s_{1}(\alpha)$ and $s_{1}{ }^{\prime}(\alpha)$ are representatives of α modulo $p \mathbb{Z}_{p}$ belonging to $\mathbb{Z}\left[\frac{1}{p}\right] \cap(-p, p)$. They have opposite signs. If $\alpha \in p \mathbb{Z}_{p}$, then $s_{1}(\alpha)=s_{1}{ }^{\prime}(\alpha)=0$.

Similarly, let

$$
s_{2}(\alpha)=\sum_{n=r}^{-1} a_{n} p^{n} \quad \text { and } \quad s_{2}^{\prime}(\alpha)=s_{2}(\alpha)-\operatorname{sign}\left(s_{2}(\alpha)\right) .
$$

If $\alpha \in \mathbb{Q}_{p} \backslash \mathbb{Z}_{p}$, then $s_{2}(\alpha)$ and $s_{2}{ }^{\prime}(\alpha)$ are representatives of α modulo \mathbb{Z}_{p} belonging to $\mathbb{Z}\left[\frac{1}{p}\right] \cap(-1,1)$. They have opposite signs. If $\alpha \in \mathbb{Z}_{p}$, then $s_{2}(\alpha)=s_{2}{ }^{\prime}(\alpha)=0$.

In the algorithms below there are given some rules deciding which of these two representatives should be chosen in the definition of an appropriate continued fraction.

Algorithm II.

We use the above notation. Let $s_{1}{ }^{\prime \prime}=s_{1}$ and

$$
s_{2}^{\prime \prime}(\alpha)= \begin{cases}s_{2}(\alpha) & \text { if } \quad v\left(\alpha-s_{2}(\alpha)\right)=0 \\ s_{2}^{\prime}(\alpha) & \text { otherwise }\end{cases}
$$

Then $v\left(\alpha-s_{2}{ }^{\prime \prime}(\alpha)\right)=0$, provided $v(\alpha) \leq 0$.
For a p-adic number α we define finite or infinite sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ as follows.

Step 0. $\quad a_{0}=\alpha, \quad b_{0}=s_{1}{ }^{\prime \prime}\left(a_{0}\right)$.
Step 1. If $a_{0}=b_{0}$, then a_{1} and b_{1} are not defined.

$$
\text { If } a_{0} \neq b_{0}, \text { then } a_{1}=\left(a_{0}-b_{0}\right)^{-1} \text { and } b_{1}=s_{2}^{\prime \prime}\left(a_{1}\right)
$$

Step 2. If $a_{1}=b_{1}$, then a_{2} and b_{2} are not defined.
If $a_{1} \neq b_{1}$, then $a_{2}=\left(a_{1}-b_{1}\right)^{-1}$ and $b_{2}=s_{1}{ }^{\prime \prime}\left(a_{2}\right)$, etc.
We use $s_{1}^{\prime \prime}$ in steps of even number, and $s_{2}{ }^{\prime \prime}$ in steps of odd number.
Obviously the sequence $\left(b_{n}\right)$ satisfies (3), consequently by Lemma 1 the corresponding sequence $\left(\frac{A_{n}}{B_{n}}\right)$ is convergent to a p-adic number. In fact $\lim \frac{A_{n}}{B_{n}}=\alpha$.

The proof is standard and we omit it (cf. [Br]).
Let us remark that, for n odd, we have $v\left(a_{n}-b_{n}\right)=v\left(a_{n}-s_{2}{ }^{\prime \prime}\left(a_{n}\right)\right)=0$. Consequently $v\left(a_{n+1}\right)=0$, and hence

$$
b_{n+1}=s_{2}^{\prime \prime}\left(a_{n+1}\right) \in\left\{ \pm 1, \pm 2, \ldots, \pm \frac{p-1}{2}\right\}
$$

We compare Algorithm II with the definition of Schneider. We use the notation

$$
\alpha=b_{0}+\frac{a_{0}}{b_{1}+\frac{a_{1}}{b_{2}+\cdots}}=\left[b_{0} ; a_{0} a_{1} \cdots \cdots\right],
$$

and $\left[b_{0} ; b_{1}, b_{2}, \ldots\right]_{\text {II }}$ for the continued fraction obtained by Algorithm II.
Let us observe that, for an arbitrary $r \neq 0$,

$$
\left[b_{0} ; \begin{array}{cccc}
a_{0} & \cdots & a_{k-1} & a_{k} \tag{5}\\
b_{1} & \cdots & b_{k} & b_{k+1}
\end{array} \cdots\right]=\left[b_{0} ; \begin{array}{llll}
a_{0} & \cdots & r a_{k-1} & r a_{k}
\end{array}\right]
$$

where the three elements indicated have been multiplied by r.
Let

$$
\alpha=\left[b_{0} ; b_{1}, b_{2}, \ldots\right]_{\mathrm{II}}=\left[b_{0} ; \begin{array}{ccc}
1 & 1 & \cdots \\
b_{1} & b_{2} & \cdots
\end{array}\right],
$$

where $v\left(b_{2 n}\right)=0$ and $b_{2 n-1}=\frac{c_{2 n-1}}{p^{\alpha_{n}}},\left|c_{2 n-1}\right|<\frac{1}{2} p^{\alpha_{n}}$, for $n \geq 1$.
Then in view of (5)

$$
\alpha=\left[b_{0} ; \begin{array}{ccccc}
p^{\alpha_{1}} & p^{\alpha_{1}} & p^{\alpha_{2}} & p^{\alpha_{2}} & \cdots \\
c_{1} & b_{2} & c_{3} & b_{4} & \cdots
\end{array}\right] .
$$

In particular, if $\alpha_{n}=1$ for all n, we get

$$
\left[b_{0} ; b_{1}, b_{2}, \ldots\right]_{\mathrm{II}}=\left[b_{0} ; \begin{array}{ccccc}
p & p & p & p & \cdots \\
c_{1} & b_{2} & c_{3} & b_{4} & \cdots
\end{array}\right]
$$

and $b_{j}, c_{k} \in\left\{ \pm 1, \pm 2, \ldots, \pm \frac{p-1}{2}\right\}$.
Thus in this particular case we get a continued fraction of Schneider with the set $\{0,1, \ldots, p-1\}$ of residues modulo p replaced by $\left\{0, \pm 1, \pm 2, \ldots, \pm \frac{p-1}{2}\right\}$.

Conversely, if the continued fraction of Schneider (with the set of residues changed as above)

$$
\alpha=\left[\begin{array}{ccc}
b_{0} ; & p^{\alpha_{1}} & p^{\alpha_{2}}
\end{array}{ }^{b_{1}} \begin{array}{lll}
b_{1} & b_{2} & \cdots
\end{array}\right]
$$

satisfies $\alpha_{2 n-1}=\alpha_{2 n}$ for $n \geq 1$, then in view of (5) we get

$$
\alpha=\left[b_{0} ; b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right]_{\mathrm{II}}
$$

where $b_{2 n-1}^{\prime}=b_{2 n-1} / p^{\alpha_{2 n-1}}$ and $b_{2 n}^{\prime}=b_{2 n}$ for $n \geq 1$.
Algorithm III (For quadratic irrationalities only).
Let m be a rational number such that $\sqrt{m} \in \mathbb{Q}_{p} \backslash \mathbb{Q}$. Then every $\alpha \in \mathbb{Q}(\sqrt{m}) \backslash \mathbb{Q}$ can be written uniquely in the form $\alpha=\frac{\sqrt{m}+P}{Q}$ with $P, Q \in \mathbb{Q}$.

We use the above notation and proceed analogously as in Algorithm II, but we change $s_{1}{ }^{\prime \prime}$ and $s_{2}{ }^{\prime \prime}$ as follows. Let $s_{1}{ }^{\prime \prime \prime}(\alpha) \in\left\{s_{1}(\alpha), s_{1}{ }^{\prime}(\alpha)\right\}$ and let $s_{1}{ }^{\prime \prime \prime}(\alpha)$ have the same sign as $P Q$. Next,

$$
s_{2}{ }^{\prime \prime \prime}(\alpha)= \begin{cases}s_{2}(\alpha) & \text { if } \quad v\left(\alpha-s_{2}{ }^{\prime}(\alpha)\right)>0 \\ s_{2}{ }^{\prime}(\alpha) & \text { if } \quad v\left(\alpha-s_{2}(\alpha)\right)>0, \\ \tilde{s_{2}}(\alpha) & \text { otherwise }\end{cases}
$$

where $\tilde{s_{2}}(\alpha) \in\left\{s_{2}(\alpha), s_{2}{ }^{\prime}(\alpha)\right\}$ and $\tilde{s_{2}}(\alpha)$ has the same sign as $P Q$. We assume here that $P Q \neq 0$.

The algorithm is the same as Algorithm II but we replace $s_{1}{ }^{\prime \prime}$ and $s_{2}{ }^{\prime \prime}$ by $s_{1}{ }^{\prime \prime \prime}$ and $s_{2}{ }^{\prime \prime \prime}$, respectively.

Algorithm IV (For quadratic irrationalities only).

In Algorithm III we replace the conditions of the form $s \in\left\{t, t^{\prime}\right\}$ and s has the same sign as $P Q$ by the condition $s \in\left\{t, t^{\prime}\right\}$ and $\left|\frac{P}{Q}-s\right|=\min \left(\left|\frac{P}{Q}-t\right|,\left|\frac{P}{Q}-t^{\prime}\right|\right)$, where $|\cdot|$ means the ordinary absolute value in \mathbb{R}.

4. Numerical examples

To simplify notation, we use braces $\}$ to denote the period of continued fraction, and we use the symbol $\|$ if the period can be divided into some specific parts, e.g., symmetric ones. For example, $[a ; b, c, d, c, e, c, d, c, e, c, d, c, e \ldots]$ is denoted by $[a ; b,\{c, d, c, \| e\}]$.

We use the notation $\left[b_{0} ; b_{1}, \ldots\right]_{N}$, where $N=\mathrm{I}$, II, III or IV, to indicate which algorithm has been used.

Usually we cannot prove that a continued fraction for a given quadratic irrationality is not periodic. We can state only that a period was not observed until, in the standard notation $a_{n}=\frac{\sqrt{m}+P_{n}}{Q_{n}}$, the integers P_{n}, Q_{n} have many digits (usually more than 10).

All computations have been performed using the package GP/PARI, version 1.39.

We have made the following observations concerning the periods. See also [Be1].
In most cases (especially if we use Algorithm I) the period consists of two parts of odd lengths, which are symmetric. In some cases the period consists of two parts of the same odd lengths, which differ slightly. There are also some periods without any regularity.

We cannot prove any of these observations. Of course if we use one of the Algorithms II-IV, the period length must be even by the construction provided the period exists.

Most examples with periods of length 2 are particular cases of the following lemma.

Lemma 2 (cf. [We2])). Let $a, c, m \in \mathbb{Z}, p \nmid a c m, b \in \mathbb{Z}\left[\frac{1}{p}\right], v(b)<0$, and m be not a square in \mathbb{Z}.

Then

$$
\sqrt{m}=[a ;\{b, c\}]
$$

if and only if $c=2 a, b=\frac{2 a}{d p^{k}}$, for some $k \geq 1, d \in \mathbb{Z}, d \mid 2 a$, and

$$
m=a^{2}+d p^{k}
$$

Proof. The sufficiency of these conditions has been observed by de Weger [We2]. To prove the necessity we note that $x=\sqrt{m}$ satisfies

$$
(x-a)(x-a+c)=\frac{c}{b}
$$

Since the left-hand side is an algebraic integer and $b=\frac{b^{\prime}}{p^{k}}$ for some $b^{\prime} \in \mathbb{Z}, p \nmid b^{\prime}$, we get $b^{\prime} \mid c, c=b^{\prime} d$. Hence

$$
x^{2}+(c-2 a) x-a(c-a)-p^{k} d=0 .
$$

Since \sqrt{m} is irrational, it follows that $c-2 a=0$ and hence

$$
m=x^{2}=a(c-a)+p^{k} d=a^{2}+d p^{k} .
$$

Moreover $b=\frac{b^{\prime}}{p^{k}}=\frac{2 a}{d p^{k}}$.

Remark. In Lemma 2 we cannot omit the assumption that \sqrt{m} is irrational, since, e.g.,

$$
\frac{p+1}{2}=\left[\frac{p-1}{2} ;\left\{\frac{p-1}{2 p}, p-1\right\}\right] .
$$

It seems however that applying Algorithm II to a rational number α we always get a finite continued fraction, but we cannot prove this assertion.

Lemma 3. If $a, b, c \in \mathbb{Z}, b^{\prime}=\operatorname{gcd}(b, 2)$, and p is an odd prime number satisfying

$$
\begin{equation*}
p \nmid a b c, b b^{\prime}|c+2 a, b c+2 p| c-2 a \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
m:=a^{2}+p \frac{2 a(b c+p)+p c}{b(b c+2 p)} \in \mathbb{Z} \tag{7}
\end{equation*}
$$

Let $\alpha \in \mathbb{Q}_{p}$ be defined by the periodic continued fraction

$$
\begin{equation*}
\alpha=\left[a ;\left\{\frac{b}{p}, c, \frac{b}{p}, \| 2 a\right\}\right] . \tag{8}
\end{equation*}
$$

Then $\alpha^{2}=m$, i.e., \sqrt{m} in \mathbb{Q}_{p} has a periodic continued fraction expansion given by (8). The length of the period equals 2 if $c=2 a$ and $b \mid 2 a$, and equals 4 otherwise.

Proof. 1) From (6) and (7) it follows that $m \in \mathbb{Z}$ iff $b(b c+2 p)$ divides $2 a(b c+p)+p c$.
We have by (6)
(9) $\quad 2 a(b c+p)+p c=\left\{\begin{array}{lll}2 a(b c+2 p)+p(c-2 a) & \equiv 0 \quad(\bmod b c+2 p), \\ 2 a b c+p(c+2 a) & \equiv 0 \quad\left(\bmod b b^{\prime}\right) .\end{array}\right.$

Since $\operatorname{gcd}(b, b c+2 p)=\operatorname{gcd}(b, 2)=b^{\prime}$, from (9) it follows that $2 a(b c+p)+p c \equiv 0$ $(\bmod b(b c+2 p))$.
2) The continued fraction in (8) is convergent in \mathbb{Q}_{p} by Lemma 1 . In a standard way one can find the quadratic equation satisfied by α. It is $\alpha^{2}=m$, where m is given by (7).

The last part of the lemma is obvious.
Taking some particular values for a, b, c satisfying (6) we get periodic continued fractions with the period of length 4, e.g.,

$$
\begin{aligned}
& \sqrt{2 p^{2}+2 p+1}=\left[p+1 ;\left\{\frac{1}{p}, 1, \frac{1}{p}, \| 2 p+2\right\}\right] \\
& \sqrt{(a+p)^{2}-2 p^{2}}=\left[a ;\left\{\frac{1}{p}, a-p, \frac{1}{p}, \| 2 a\right\}\right]
\end{aligned}
$$

in particular taking the least $a>(\sqrt{2}-1) p$, we get, e.g., for $p=257$

$$
\sqrt{398}=\left[107 ;\left\{\frac{1}{p},-150, \frac{1}{p}, \| 214\right\}\right]
$$

and for $p=21961$

$$
\sqrt{28322}=\left[9097 ;\left\{\frac{1}{p},-12864, \frac{1}{p}, \| 18194\right\}\right] .
$$

It is not clear if for given p there are infinitely many a, b, c satisfying (6).

We investigated continued fractions for square roots $\sqrt{m} \in \mathbb{Q}_{p}$, where $1 \leq m \leq$ 5000 , for $p=5$, and $1 \leq m \leq 500$, for $p=23,257$, and 21961. We assumed always that $\operatorname{gcd}(m, p)=1$. Then the Legendre symbol $(m / p)=1$.

The results are as follows.

The field \mathbb{Q}_{5}.

Algorithm I.

The following continued fractions are periodic (we correct here the mistakes for $m=11$ in $[\mathrm{Br}]$). For brevity we give the results for $1 \leq m \leq 100$ only.

$$
\begin{aligned}
& \sqrt{6}=\left[1 ;-\frac{8}{5},\left\{\frac{6}{5}, \| \frac{7}{5},-\frac{16}{25}, \frac{7}{5}\right\}\right] \\
& \sqrt{11}=\left[1 ;-\frac{9}{5},\left\{\frac{9}{5},-\frac{8}{5}, \frac{9}{5}, \| \frac{6}{5}, \frac{2}{5}, \frac{56}{25},-\frac{2}{5}, \frac{6}{5}, \frac{27}{25},-\frac{11}{5},-\frac{2}{5}, \frac{16}{125},\right.\right. \\
& \left.\left.\frac{12}{5},-\frac{58}{25}, \frac{12}{5}, \frac{16}{125},-\frac{2}{5},-\frac{11}{5}, \frac{27}{25}, \frac{6}{5},-\frac{2}{5}, \frac{56}{25}, \frac{2}{5}, \frac{6}{5}\right\}\right] \\
& \sqrt{14}=\left[2 ;-\frac{3}{5},\left\{-\frac{9}{5},-\frac{6}{5}, \frac{166}{125},-\frac{6}{5},-\frac{9}{5}, \|-\frac{8}{5}\right\}\right] \\
& \sqrt{21}=\left[1 ; \frac{3}{5},\left\{\frac{3}{5},-\frac{4}{5}, \frac{3}{5}, \|-\frac{7}{5}, \frac{26}{25},-\frac{7}{5}\right\}\right] \\
& \sqrt{24}=\left[2 ;-\frac{4}{5},\left\{\frac{12}{5}, \|-\frac{9}{5}\right\}\right] \\
& \sqrt{34}=\left[2 ; \frac{4}{5},\left\{\frac{2}{5},-\frac{28}{25}, \frac{2}{5}, \|-\frac{1}{5}, \frac{56}{25},-\frac{1}{5}\right\}\right] \\
& \sqrt{54}=\left[2 ;-\frac{23}{25},\left\{-\frac{6}{5},-\frac{1}{5}, \frac{9}{5}, \frac{4}{5},-\frac{2}{5}, \frac{4}{5}, \frac{9}{5},-\frac{1}{5},-\frac{6}{5}, \|-\frac{48}{25}\right\}\right] \\
& \sqrt{69}=\left[2 ; \frac{3}{5},\left\{-\frac{6}{5},-\frac{1}{5},-\frac{8}{5},-\frac{1}{5},-\frac{6}{5}, \|-\frac{2}{5},-\frac{2}{5}, \frac{174}{125},-\frac{2}{5},-\frac{2}{5}\right\}\right] \\
& \sqrt{74}=\left[2 ; \frac{6}{5},\left\{-\frac{6}{5}, \frac{7}{5}, \frac{36}{25}, \frac{7}{5},-\frac{6}{5}, 11 \frac{1}{5},-\frac{3}{5},-\frac{23}{25},-\frac{2}{5}, \frac{4}{5},-\frac{7}{5}, \frac{8}{5},\right.\right. \\
& -\frac{8}{25},-\frac{3}{5}, \frac{9}{5}, \frac{52}{25},-\frac{21}{25}, \frac{4}{5}, \frac{1}{5}, \frac{11}{5},-\frac{3}{5}, \frac{156}{125},-\frac{11}{5}, \\
& \frac{1}{5}, \frac{8}{5},-\frac{11}{25}, \frac{4}{5},-\frac{7}{5},-\frac{3}{5},-\frac{36}{25},-\frac{4}{5},-\frac{9}{5}, \frac{14}{25},-\frac{9}{5}, \\
& -\frac{4}{5},-\frac{36}{25},-\frac{3}{5},-\frac{7}{5}, \frac{4}{5},-\frac{11}{25}, \frac{8}{5}, \frac{1}{5},-\frac{11}{5}, \frac{156}{125},-\frac{3}{5}, \\
& \left.\left.\frac{11}{5}, \frac{1}{5}, \frac{4}{5},-\frac{21}{25}, \frac{52}{25}, \frac{9}{5},-\frac{3}{5},-\frac{8}{25}, \frac{8}{5},-\frac{7}{5}, \frac{4}{5},-\frac{2}{5},-\frac{23}{25},-\frac{3}{5}, \frac{1}{5}\right\}\right] \\
& \sqrt{76}=\left[1 ; \frac{34}{25},\left\{-\frac{1}{5},-\frac{6}{5},-\frac{9}{5},-\frac{2}{5},-\frac{9}{5},-\frac{6}{5},-\frac{1}{5}, \|-\frac{16}{25},-\frac{3}{5},-\frac{9}{5},-\frac{1}{5},\right.\right. \\
& \left.\left.\frac{12}{5},-\frac{12}{5}, \frac{2}{5}, \frac{8}{5}, \frac{9}{5},-\frac{2}{5}, \frac{9}{5}, \frac{8}{5}, \frac{2}{5},-\frac{12}{5}, \frac{12}{5},-\frac{1}{5},-\frac{9}{5},-\frac{3}{5},-\frac{16}{25}\right\}\right] \\
& \sqrt{94}=\left[2 ;-\frac{2}{5},\left\{-\frac{8}{5}, \frac{62}{125},-\frac{8}{5}, \|-\frac{7}{5}, \frac{3}{5}, \frac{8}{5}, \frac{1}{5}, \frac{12}{5}, \frac{1}{5}, \frac{8}{5}, \frac{3}{5},-\frac{7}{5}\right\}\right] \\
& \sqrt{99}=\left[2 ; \frac{11}{5},\left\{-\frac{23}{25}, \| \frac{6}{5}, \frac{2}{5}, \frac{2}{5}, \frac{43}{25}, \frac{2}{5}, \frac{2}{5}, \frac{6}{5}\right\}\right]
\end{aligned}
$$

For other m 's in question, i.e., for $m=19,26,29,31,39,41,44,46,51,56,59$, $61,66,71,79,84,86,89,91,96$ (20 cases) no period has been observed.

Algorithm II gives similar results as Algorithm I. In many cases periods are shorter. We give the results for $1 \leq m \leq 100$ only.

$$
\left.\begin{array}{l}
\sqrt{6}=\left[1 ;\left\{\frac{2}{5}, 2\right\}\right] \\
\sqrt{11}=\left[1 ;\left\{\frac{1}{5}, 2\right\}\right] \\
\sqrt{14}=\left[2 ;\left\{\frac{2}{5}, \|-1,-\frac{1}{5}, 2,-\frac{1}{5},-1\right\}\right] \\
\sqrt{21}=\left[1 ;\left\{-\frac{2}{5}, 1, \frac{2}{5}, 2, \frac{1}{5},-2, \frac{2}{5},-2, \frac{1}{5}, 2, \frac{2}{5}, 1,-\frac{2}{5}, \| 2\right\}\right] \\
\sqrt{24}=\left[2 ;\left\{\frac{1}{5}, \|-1,-\frac{2}{5},-1\right\}\right] \\
\sqrt{26}=\left[1 ;\left\{\frac{2}{25}, 2\right\}\right] \\
\sqrt{29}=\left[2 ;\left\{\frac{4}{25}, \|-1, \frac{1}{5}, 1, \frac{2}{5}, 2,-\frac{3}{25},-1,-\frac{46}{125},-1, \frac{-3}{25}, 2, \frac{2}{5}, 1, \frac{1}{5},-1\right\}\right] \\
\sqrt{31}=\left[1 ;\left\{\frac{2}{5}, 1, \frac{2}{5}, 1,-\frac{3}{25},-2, \frac{2}{5},-2, \frac{2}{5},-2,-\frac{3}{25}, 1, \frac{2}{5}, 1, \frac{2}{5}, \| 2\right\}\right] \\
\sqrt{34}
\end{array}\right)\left[2 ;\left\{-\frac{1}{5}, 1,-\frac{2}{5},-1,-\frac{28}{25}, 1,-\frac{2}{5},-1,-\frac{1}{5}, 1,-\frac{6}{25},-2,-\frac{3}{5}, 1,-\frac{2}{5},-1, \frac{1}{5}, 2,-\frac{9}{25}, 1, \frac{2}{5},\right\}\right.
$$

In most cases the period begins at b_{1}, but there are exceptions: $m=69,79$, when the period begins at b_{4}, resp. b_{16}. In most cases the period has some symmetry (the exceptions are $m=34,39,79,99$).

No period has been observed for $m=19,41,44,46,59,66,71,74,76,86,89$, 91, 94, 96 (14 cases).

Algorithms III and IV give very similar results, so we present them simultaneously (for $1 \leq m \leq 50$ only).

$$
\begin{aligned}
& \sqrt{6}=\left[1 ;\left\{\frac{2}{5}, 2\right\}\right]_{\mathrm{II}, \mathrm{III}, \mathrm{IV}} \\
& \sqrt{11}=\left[1 ;\left\{\frac{1}{5}, 2\right\}\right]_{\mathrm{II}, \mathrm{III}, \mathrm{IV}} \\
& \sqrt{14}=\left[2 ;\left\{\frac{2}{5}, 4\right\}\right]_{\mathrm{III}, \mathrm{IV}} \\
& \sqrt{19}=\left[2 ;\left\{\frac{3}{5},-2, \frac{1}{5}, \mathrm{II}-3, \frac{2}{5},-1\right\}\right]_{\mathrm{III}, \mathrm{IV}} \\
& \sqrt{21}=\left[1 ;\left\{-\frac{2}{5}, 1, \frac{2}{5},-3\right\}\right]_{\mathrm{III}, \mathrm{IV}} \\
& \sqrt{24}=\left[2 ;\left\{\frac{1}{5}, 4\right\}\right]_{\mathrm{III}, \mathrm{IV}} \\
& \sqrt{26}=\left[1 ;\left\{\frac{2}{25}, 2\right\}\right]_{\mathrm{III}, \mathrm{IV}} \\
& \sqrt{29}=\left[2 ;\left\{\frac{4}{25}, 4\right\}\right]_{\mathrm{III}, \mathrm{IV}}
\end{aligned}
$$

The first case where the Algorithms III and IV give distinct results is $m=31$:

$$
\begin{aligned}
& \sqrt{31}=\left[1 ;\left\{\frac{2}{5},-4,-\frac{1}{5},-4, \frac{2}{5}, \| 2\right\}\right]_{\mathrm{III}} \\
& \sqrt{31}=\left[1 ;\left\{\frac{2}{5},-4,-\frac{1}{5}, 1, \frac{3}{5},-2, \frac{4}{5}, 1,-\frac{1}{5},-3\right\}\right]_{\mathrm{IV}} \\
& \sqrt{34}=\left[2 ;\left\{-\frac{1}{5}, 1, \frac{3}{5}, 2, \frac{3}{5},-4, \frac{6}{25}, 1, \| \frac{1}{5},-1,-\frac{3}{5},-2,-\frac{3}{5}, 4,-\frac{6}{25},-1\right\}\right]_{\mathrm{III}, \mathrm{IV}} \\
& \sqrt{39}=\left[2 ;\left\{\frac{2}{5},-3, \frac{3}{5}, 2\right\}\right]_{\mathrm{III}, \mathrm{IV}}
\end{aligned}
$$

For $m=41,44,46$ the results of Algorithms III and IV differ.

$$
\begin{aligned}
\sqrt{41}= & {\left[1 ;\left\{\frac{4}{5},-4,-\frac{4}{5}, 1,-\frac{3}{5},-3, \frac{13}{25},-2, \frac{2}{5},-1,-\frac{3}{5},-1, \frac{2}{5}, 4\right.\right.} \\
& \left.\left.-\frac{3}{25},-1,-\frac{1}{5}, 3,-\frac{2}{5}, 1, \frac{3}{5}, 1, \frac{2}{5},-4,-\frac{3}{5}, 2,-\frac{8}{25},-3\right\}\right]_{\mathrm{III}} \\
\sqrt{41}= & {\left[1 ;\left\{-\frac{1}{5}, 3, \frac{3}{5},-1, \frac{2}{5},-1, \frac{3}{5},-2, \frac{8}{25}, 3, \| \frac{1}{5},-3,-\frac{3}{5}, 1,-\frac{2}{5}, 1,-\frac{3}{5}, 2,-\frac{8}{25},-3\right\}\right]_{\mathrm{IV}} } \\
\sqrt{44}= & {\left[2 ;\left\{\frac{3}{5},-4, \frac{3}{5}, \| 4\right\}\right]_{\mathrm{III}} } \\
\sqrt{44}= & {\left[2 ;\left\{-\frac{2}{5}, 3, \frac{1}{5}, \| 2,-\frac{3}{5},-1\right\}\right]_{\mathrm{IV}} } \\
\sqrt{46}= & {\left[1 ; \frac{3}{5},-3, \frac{4}{5},\left\{-4, \|-\frac{1}{5}, 4,-\frac{22}{25}, 4,-\frac{1}{5}\right\}\right]_{\mathrm{III}} } \\
\sqrt{46}= & {\left[1 ;-\frac{2}{5}, 4,-\frac{3}{5}, 1,\left\{-\frac{1}{5},-1,-\frac{4}{5},-1,-\frac{1}{5}, \|-4\right\}\right]_{\mathrm{IV}} }
\end{aligned}
$$

We have verified that Algorithm IV applied to \sqrt{m} gives periodic continued fractions for every $m, 2 \leq m \leq 5000$. For example, for $m=3994$ the period begins with b_{61} and has 160 terms.

The field \mathbb{Q}_{23}.

We have applied Algorithm I to \sqrt{m}, for $1 \leq m \leq 200$ and the period has been observed in three cases only.

$$
\begin{aligned}
\sqrt{75} & =\left[11 ;-\frac{34}{23},\left\{\frac{38}{23},-\frac{57}{23}\right\}\right]_{\mathrm{I}} \\
\sqrt{98} & =\left[11 ;-\frac{45}{23},\left\{\frac{34}{23},-\frac{68}{23}\right\}\right]_{\mathrm{I}} \\
\sqrt{167} & =\left[11 ;-\frac{12}{23},\left\{\frac{70}{23},-\frac{35}{23}\right\}\right]_{\mathrm{I}}
\end{aligned}
$$

On the other hand applying Algorithm IV for $2 \leq m \leq 500$ we get periods in most cases. The only exceptions for $m \leq 200$ where the period has not been observed are $m=93,101,117,119,133,141,154,163,186$. We have the following examples.

$$
\begin{aligned}
\sqrt{2} & =\left[5 ;\left\{-\frac{10}{23}, 10\right\}\right]_{\mathrm{IV}} \\
\sqrt{3} & =\left[7 ;\left\{-\frac{7}{23}, 14\right\}\right]_{\mathrm{IV}} \\
\sqrt{6} & =\left[11 ;-\frac{9}{23},-7, \frac{1}{23}, 15,\left\{\frac{12}{23},-8\right\}\right]_{\mathrm{IV}} \\
\sqrt{29} & =\left[11 ;\left\{\frac{6}{23}, 7,-\frac{13}{23}, 13,-\frac{10}{23}, 3,-\frac{22}{23}, 10,-\frac{113}{529}, \ldots, 7, \frac{6}{23}, 22\right\}\right]_{\mathrm{IV}}
\end{aligned}
$$

The period has length 94 and no symmetry has been observed.
The longest period of 112 terms has $\sqrt{462}$.

$$
\sqrt{462}=\left[5 ; \frac{9}{23},\left\{8, \frac{7}{23}, \ldots,-\frac{14}{23}\right\}\right]_{\mathrm{IV}}
$$

The field \mathbb{Q}_{257}.
We have applied Algorithm IV. For $1 \leq m \leq 500$, the continued fractions were periodic in 59 cases. The length of the period was 2 (for $m=15,32,62,67, \ldots$), 4 or 10. In the case of length 2 (resp. 4) the continued fraction has the form described in Lemma 2 (resp. in Lemma 3).

We write down all the examples with period lenghts 4 and 10.

$$
\begin{aligned}
\sqrt{50} & =\left[43 ;\left\{-\frac{49}{257}, 12,-\frac{49}{257}, \| 86\right\}\right]_{\mathrm{IV}} \\
\sqrt{120} & =\left[67 ;\left\{-\frac{23}{257}, 27,-\frac{23}{257}, \| 134\right\}\right]_{\mathrm{IV}} \\
\sqrt{241} & =\left[64 ;\left\{\frac{60}{257},-8, \frac{60}{257}, \| 128\right\}\right]_{\mathrm{IV}} \\
\sqrt{392} & =\left[69 ;\left\{\frac{7}{257},-47, \frac{7}{257}, \| 138\right\}\right]_{\mathrm{IV}} \\
\sqrt{396} & =\left[41 ;\left\{\frac{35}{257},-12, \frac{35}{257}, \| 82\right\}\right]_{\mathrm{IV}} \\
\sqrt{398} & =\left[107 ;\left\{\frac{1}{257},-150, \frac{1}{257}, \| 214\right\}\right]_{\mathrm{IV}} \\
\sqrt{454} & =\left[35 ;\left\{-\frac{109}{257}, 24, \frac{26}{257}, 1,-\frac{17032}{66049}, 1, \frac{26}{257}, 24,-\frac{109}{257}, \| 70\right\}\right]_{\mathrm{IV}}
\end{aligned}
$$

The field \mathbb{Q}_{21961}.

We have applied Algorithm IV to \sqrt{m} for $1 \leq m \leq 500$, and continued fractions were periodic only for $m=3,57,178,228,240$, and 363 . The continued fraction
always has the form described in Lemma 2:

$$
\sqrt{a^{2}+d p}=[a ;\{2 a / d p, 2 a\}]
$$

where $p=21961$ and the integers a, d satisfy $d \mid 2 a$, and $m=a^{2}+d p$. Namely,

m	a	$2 a / d$
3	363	-121
57	646	-68
178	2120	-210
228	1292	-34
240	149	-298
363	3993	-11

In other cases the period has not been observed.

References

[Beck] P.G. Becker, Periodizitätseigenschaften p-adischer Kettenbrüche, Elem. Math. 45 (1990), 1-8. MR 91c:11005
[Be1] E. Bedocchi, Nota sulle frazioni continue p-adiche, Ann. Mat. Pura Appl. 152 (1988), 197-207. MR 90d:11014
[Be2] E. Bedocchi, Remarks on periods of p-adic continued fractions, Boll. Un. Mat. Ital. (7) 3-A (1989), 209-214. MR 90g:11093
[Be3] E. Bedocchi, Sur le developpement de \sqrt{m} en fraction continue p-adique, Manuscripta Math. 67 (1990), 187-195. MR 91b:11139
[Be4] E. Bedocchi, Fractions continues p-adiques: périodes de longueur paire, Boll. Un. Mat. Ital. (7) 7-A (1993), 259-265. MR 94e:11128
[Br] J. Browkin, Continued fractions in local fields, I, Demonstratio Math. 11 (1978), 67-82. MR 58:21964
[Bu] P. Bundschuh, p-adische Kettenbrüche und Irrationalität p-adischer Zahlen, Elem. Math. 32 (1977), 36-40. MR 56:11882
[Dea] A.A. Deanin, Periodicity of p-adic continued fraction expansions, J. Number Theory 23 (1986), 367-387. MR 87k:11072
[La] V. Laohakosol, A characterization of rational numbers by p-adic Ruban continued fractions, J. Austral. Math. Soc., Ser A 39 (1985), 300-305. MR 86k:11035
[Ru] A.A. Ruban, Certain metric properties of p-adic numbers, (Russian), Sibirsk. Mat. Zh. 11 (1970), 222-227. MR 41:5324
[Sch] T. Schneider, Über p-adische Kettenbrüche, Symp. Math. 4 (1968/69), 181-189. MR 42:7601
[Ti] F. Tilborgs, Periodic p-adic continued fractions, Simon Stevin 64 (1990), 383-390.
[Wa1] Wang Lianxiang, p-adic continued fractions, (I), Scientia Sinica, Ser. A 28 (1985), 10091017. MR 88c:11043
[Wa2] Wang Lianxiang, p-adic continued fractions, (II), Scientia Sinica, Ser. A 28 (1985), 10181023. MR 88c:11043
[We1] B.M.M. de Weger, Approximation lattices of p-adic numbers, J. Number Theory 24 (1986), 70-88. MR 87k:11069
[We2] B.M.M. de Weger, Periodicity of p-adic continued fractions, Elem. Math. 43 (1988), 112116. MR 89j:11006

Institute of Mathematics, University of Warsaw, ul. Banacha 2, PL-02-097 Warsaw, Poland

E-mail address: bro@mimuw.edu.pl

[^0]: Received by the editor August 25, 1999.
 2000 Mathematics Subject Classification. Primary 11J70; Secondary 11S85.
 Key words and phrases. p-adic continued fractions, periodicity.

