Supplementary Materials for Chapter 8

Winona State University

Last Updated:

October 30, 2012

Motivating Identity

Although we can blissfully ignore the connections between complex numbers and trigonometry, it requires a heck of a lot more work and the notation is uninstructive. Instead we use the following identity which cannot be formally proved until Calculus II:

Theorem (Euler's Identity)

For any real number θ,

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

where i is the imaginary unit, i.e. $i^{2}=-1$.

Examples

Example

(1) $e^{i \pi}=\cos \pi+i \sin \pi=-1$.
(2) $e^{i 3 \pi / 2}=\cos 3 \pi / 2+i \sin 3 \pi / 2=-i$.
(3) $e^{i 8 \pi}=\cos 8 \pi+i \sin 8 \pi=1$.
(4) $6 e^{i \pi / 3}=6(\cos \pi / 3+i \sin \pi / 3)=6\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=3+i 3 \sqrt{3}$.
(6) $\sqrt{2} e^{\pi / 4}=\sqrt{2}(\cos \pi / 4+i \sin \pi / 4)=\sqrt{2}\left(\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}}\right)=1+i$.

Complex Numbers in Polar Form

Definition

A complex number $z=a+b i$ has polar form:

$$
z=r e^{i \theta}
$$

where $r=\sqrt{a^{2}+b^{2}}$ and $\tan \theta=b / a$. The value r is called the modulus of the complex number and is often denoted $r=|z|$. The value θ is called the argument of the complex number and is sometimes denoted $\theta=\arg z$.

The picture on the next slide pulls together our rectangular view of complex numbers and the polar form through Euler's Identity.

Example (Example 5 from Section 8.3)

Write each complex number in polar form.
(1) $1+i$
(3) $-4 \sqrt{3}-4 i$
(2) $-1+\sqrt{3} i$
(9) $3+4 i$

SOLUTIONS:

(1) The argument associated to a positive r is $\theta=\pi / 4$. Then $r=\sqrt{1^{2}+1^{2}}=\sqrt{2}$. Thus $1+i=\sqrt{2} e^{i \pi / 4}$.
(2) The argument associated to a positive r is $\theta=2 \pi / 3$. Then $r=\sqrt{1+3}=2$. Thus $-1+\sqrt{3} i=2 e^{i 2 \pi / 3}$.
(3) The argument associated to a positive r is $\theta=7 \pi / 6$. Then $r=\sqrt{48+16}=8$. Thus $-4 \sqrt{3}-4 i=8 e^{i 7 \pi / 6}$.
(9) The argument associated to a positive r is

$$
\begin{aligned}
& \theta=\tan ^{-1}(4 / 3) \approx 0.927 . \text { Then } r=\sqrt{3^{2}+4^{2}}=5 . \text { Thus } \\
& 3+4 i=5 e^{i 0.927} .
\end{aligned}
$$

Multiplication and Division of Complex Numbers in Polar Form

Theorem

If $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then

$$
z_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}
$$

and

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

In other words, the usual rules of exponents work.
Note: For addition and subtraction, it is better to convert back to rectangular form.

Example (Example 6 from Section 8.3)

Let $z_{1}=2 e^{i \pi / 4}$ and $z_{2}=5 e^{i \pi / 3}$. Then

$$
z_{1} z_{2}=\left(2 e^{i \pi / 4}\right)\left(5 e^{i \pi / 3}\right)=2 \cdot 5 e^{i(\pi / 4+\pi / 3)}=10 e^{i 7 \pi / 12}
$$

and

$$
\frac{z_{1}}{z_{2}}=\frac{2 e^{i \pi / 4}}{5 e^{i \pi / 3}}=\frac{2}{5} e^{i(\pi / 4-\pi / 3)}=\frac{2}{5} e^{-i \pi / 12}
$$

Exponentiation

In the book, De Moivre's Theorem is a cryptic statement about taking a cosine and sine expression to a power. However, using Euler's identity we get the natural relationship:

Theorem

$$
\begin{aligned}
& \text { If } z=r e^{i \theta} \text { then } \\
& \qquad z^{n}=\left(r e^{i \theta}\right)^{n}=r^{n}\left(e^{i \theta}\right)^{n}=r^{n} e^{i \theta n}
\end{aligned}
$$

In other words, the usual rules of exponents work.

Example (Example 7 from Section 8.3)

Find $\left(\frac{1}{2}+\frac{1}{2} i\right)^{10}$.
SOLUTION
Converting to polar form gives $\frac{1}{2}+\frac{1}{2} i=\frac{1}{\sqrt{2}} e^{i \pi / 4}$. So by rules of exponents

$$
\left(\frac{1}{2}+\frac{1}{2} i\right)^{10}=\left(\frac{1}{\sqrt{2}} e^{i \pi / 4}\right)^{10}=\frac{1}{2^{5}} e^{i 10 \pi / 4}=\frac{1}{32} e^{i 5 \pi / 2}
$$

Since the original question was posed in rectangular form, we should return to that form through Euler's Identity:

$$
\frac{1}{32} e^{i 5 \pi / 2}=\frac{1}{32}(\cos 5 \pi / 2+i \sin 5 \pi / 2)=\frac{1}{32} i .
$$

So

$$
\left(\frac{1}{2}+\frac{1}{2} i\right)^{10}=\frac{1}{32} i
$$

Example (Example 9 from Section 8.3)

Find the three cube roots of $z=2+2 i$.

SOLUTION

Using cotermial angles, z can be written in polar form in 3 ways:

$$
z=2 \sqrt{2} e^{i \pi / 4}=2 \sqrt{2} e^{i 9 \pi / 4}=2 \sqrt{2} e^{i 17 \pi / 4}
$$

Thus

$$
\begin{array}{llll}
z^{1 / 3}=\left(2 \sqrt{2} e^{i \pi / 4}\right)^{1 / 3}, & \left(2 \sqrt{2} e^{i 9 \pi / 4}\right)^{1 / 3}, & \left(2 \sqrt{2} e^{i 17 \pi / 4}\right)^{1 / 3} \\
z^{1 / 3}=\sqrt{2} e^{i \pi / 12}, & \sqrt{2} e^{i 3 \pi / 4}, & \sqrt{2} e^{i 17 \pi / 12}
\end{array}
$$

The answers in rectangular form are then

$$
\begin{aligned}
z^{1 / 3} & =\sqrt{2}(\cos \pi / 12+i \sin \pi / 12) \approx 1.366+0.366 i \\
& \text { or } \sqrt{2}(\cos 3 \pi / 4+i \sin 3 \pi / 4)=-1+i \\
& \text { or } \sqrt{2}(\cos 17 \pi / 12+i \sin 17 \pi / 12) \approx-0.336-1.336 i
\end{aligned}
$$

Write the complex number in polar form with argument θ between 0 and 2π and (a) positive r, (b) negative r
(1) $1+\sqrt{3} i$
(3) -20
(2) $-1+i$
(a) $\sqrt{3}+i$

Compute the following.
(c) $(1-i \sqrt{3})^{5}$
(8) $\sqrt[3]{4 \sqrt{3}+4 i}$
(0) $(\sqrt{3}-i)^{-10}$
(0) $\sqrt[5]{32}$
(0) $(1-i)^{-8}$
(1) $\sqrt[4]{-1}$

Solve for all values of z.
(1) $z^{8}-i=0$
(1) $z^{6}-1=0$

Factor completely.
(13) $x^{5}-32$
(44) $x^{4}+1$

