Intro	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises

Supplementary Materials for Chapter 8

Winona State University

Last Updated:

October 30, 2012

Supplementary Materials for Chapter 8

/⊒ > < ≣ >

< ∃⇒

Intro ●○	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises O
Motivat	ting Identity			

Although we can blissfully ignore the connections between complex numbers and trigonometry, it requires a heck of a lot more work and the notation is uninstructive. Instead we use the following identity which cannot be formally proved until Calculus II:

Theorem (Euler's Identity)

For any real number θ ,

$$e^{i\theta} = \cos\theta + i\sin\theta$$

where *i* is the imaginary unit, i.e. $i^2 = -1$.

Intro ○●	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises O
Examp	oles			

Example

•
$$e^{i\pi} = \cos \pi + i \sin \pi = -1.$$

• $e^{i3\pi/2} = \cos 3\pi/2 + i \sin 3\pi/2 = -i.$
• $e^{i8\pi} = \cos 8\pi + i \sin 8\pi = 1.$
• $6e^{i\pi/3} = 6(\cos \pi/3 + i \sin \pi/3) = 6(\frac{1}{2} + i\frac{\sqrt{3}}{2}) = 3 + i3\sqrt{3}.$
• $\sqrt{2}e^{\pi/4} = \sqrt{2}(\cos \pi/4 + i \sin \pi/4) = \sqrt{2}(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}) = 1 + i.$

Supplementary Materials for Chapter 8

Intro 00	Complex Numbers ●○○	Multiplying and Dividing	Exponentiation	Exercises

Complex Numbers in Polar Form

Definition

A complex number z = a + bi has **polar form**:

$$z = re^{i\theta}$$

where $r = \sqrt{a^2 + b^2}$ and $\tan \theta = b/a$. The value *r* is called the modulus of the complex number and is often denoted r = |z|. The value θ is called the argument of the complex number and is sometimes denoted $\theta = \arg z$.

The picture on the next slide pulls together our rectangular view of complex numbers and the polar form through Euler's Identity.

Intro 00	Complex Numbers ○●○	Multiplying and Dividing	Exponentiation	Exercises O

<ロ> (四) (四) (三) (三) (三)

Intro	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises
	000			

Example (Example 5 from Section 8.3)

Write each complex number in polar form.

- **1** + *i* **1** + *i* **1** + *i*
- **2** $-1 + \sqrt{3}i$ **3** +4i

SOLUTIONS:

- The argument associated to a positive r is $\theta = \pi/4$. Then $r = \sqrt{1^2 + 1^2} = \sqrt{2}$. Thus $1 + i = \sqrt{2}e^{i\pi/4}$.
- **2** The argument associated to a positive r is $\theta = 2\pi/3$. Then $r = \sqrt{1+3} = 2$. Thus $-1 + \sqrt{3}i = 2e^{i2\pi/3}$.
- The argument associated to a positive r is $\theta = 7\pi/6$. Then $r = \sqrt{48 + 16} = 8$. Thus $-4\sqrt{3} 4i = 8e^{i7\pi/6}$.
- The argument associated to a positive r is $\theta = \tan^{-1}(4/3) \approx 0.927$. Then $r = \sqrt{3^2 + 4^2} = 5$. Thus $3 + 4i = 5e^{i0.927}$.

Intro 00	Complex Numbers	Multiplying and Dividing ●○	Exponentiation	Exercises O
Multip Form	lication and D	vivision of Complex	× Numbers in	Polar

Theorem If $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$, then $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$ and $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$.

In other words, the usual rules of exponents work.

Note: For addition and subtraction, it is better to convert back to rectangular form.

|▲□ ▶ ▲ 三 ▶ ▲ 三 ● ● ● ●

Intro 00	Complex Numbers	Multiplying and Dividing ○●	Exponentiation	Exercises O

Example (Example 6 from Section 8.3)

Let $z_1 = 2e^{i\pi/4}$ and $z_2 = 5e^{i\pi/3}$. Then

$$z_1 z_2 = (2e^{i\pi/4})(5e^{i\pi/3}) = 2 \cdot 5e^{i(\pi/4 + \pi/3)} = 10e^{i7\pi/12}$$

and

$$\frac{z_1}{z_2} = \frac{2e^{i\pi/4}}{5e^{i\pi/3}} = \frac{2}{5}e^{i(\pi/4 - \pi/3)} = \frac{2}{5}e^{-i\pi/12}.$$

Supplementary Materials for Chapter 8

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro 00	Complex Numbers	Multiplying and Dividing	Exponentiation ●○○	Exercises O
Expon	entiation			

In the book, De Moivre's Theorem is a cryptic statement about taking a cosine and sine expression to a power. However, using Euler's identity we get the natural relationship:

Theorem

If $z = re^{i\theta}$ then

$$z^n = (re^{i\theta})^n = r^n (e^{i\theta})^n = r^n e^{i\theta n}.$$

In other words, the usual rules of exponents work.

Intro	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises
			000	

Example (Example 7 from Section 8.3)

Find $\left(\frac{1}{2} + \frac{1}{2}i\right)^{10}$. SOLUTION

So

Converting to polar form gives $\frac{1}{2} + \frac{1}{2}i = \frac{1}{\sqrt{2}}e^{i\pi/4}$. So by rules of exponents

$$\left(\frac{1}{2} + \frac{1}{2}i\right)^{10} = \left(\frac{1}{\sqrt{2}}e^{i\pi/4}\right)^{10} = \frac{1}{2^5}e^{i10\pi/4} = \frac{1}{32}e^{i5\pi/2}$$

Since the original question was posed in rectangular form, we should return to that form through Euler's Identity:

$$\frac{1}{32}e^{i5\pi/2} = \frac{1}{32}(\cos 5\pi/2 + i\sin 5\pi/2) = \frac{1}{32}i.$$
$$\left(\frac{1}{2} + \frac{1}{2}i\right)^{10} = \frac{1}{32}i.$$

Intro	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises
			000	

Example (Example 9 from Section 8.3)

Find the three cube roots of z = 2 + 2i. SOLUTION

Using cotermial angles, z can be written in polar form in 3 ways:

$$z = 2\sqrt{2}e^{i\pi/4} = 2\sqrt{2}e^{i9\pi/4} = 2\sqrt{2}e^{i17\pi/4}$$

Thus

$$egin{array}{rcl} z^{1/3}&=&(2\sqrt{2}e^{i\pi/4})^{1/3},&(2\sqrt{2}e^{i9\pi/4})^{1/3},&(2\sqrt{2}e^{i17\pi/4})^{1/3}\ z^{1/3}&=&\sqrt{2}e^{i\pi/12},&\sqrt{2}e^{i3\pi/4},&\sqrt{2}e^{i17\pi/12} \end{array}$$

The answers in rectangular form are then

$$z^{1/3} = \sqrt{2}(\cos \pi/12 + i \sin \pi/12) \approx 1.366 + 0.366i$$

or $\sqrt{2}(\cos 3\pi/4 + i \sin 3\pi/4) = -1 + i$
or $\sqrt{2}(\cos 17\pi/12 + i \sin 17\pi/12) \approx -0.336 - 1.336i$

ヘロン 人間 とくほ とくほ とう

Э

Intro 00	Complex Numbers	Multiplying and Dividing	Exponentiation	Exercises ●
		mber in polar form wit	h argument $ heta$ bet	ween
0 a	and 2π and (a) posi	tive r, (b) negative r		

 1 + $\sqrt{3}i$ -20

 -1 + i
 $\sqrt{3} + i$

Compute the following.

(1 $-i\sqrt{3}$)⁵ ($\sqrt{3}-i$)⁻¹⁰ (1 -i)⁻⁸

Solve for all values of z.

() $z^8 - i = 0$

Factor completely.

(3)
$$x^5 - 32$$

3
$$\sqrt[3]{4\sqrt{3}+4i}$$

$$\sqrt[4]{-1}$$

$$2 z^6 - 1 = 0$$

$$x^4 + 1$$

Supplementary Materials for Chapter 8

白 と く ヨ と く ヨ と …

2