Math 280 Solutions for September 5

Pythagoras Level

Problem 1: [Nick's Math Puzzles \#5] Solution by Diophantine Equation

Let x be the number of dollars in the check, and y be the number of cents. Then $100 y+x-50=3(100 x+y)$. Therefore $97 y-299 x=50$.

A standard solution to this type of linear Diophantine equation uses Euclid's algorithm.
The Euclidean algorithm shows that $\operatorname{gcd}(97,299)=1$.
To solve $97 y-299 x=\operatorname{gcd}(97,299)=1$, we can proceed backwards through the Euclidean algorithm and arrive at: $1=$ $37 * 97-12 * 299$

Therefore a solution to $97 y-299 x=1$ is $y=37, x=12$. Hence a solution to $97 y-299 x=50$ is $y=50 * 37=1850$, $x=50 * 12=600$. It can be shown that all integer solutions of $97 y-299 x=50$ are of the form $y=1850+299 k, x=600+97 k$, where k is any integer.

In this case, because x and y must be between 0 and 99 , we choose $k=-6$. This gives $y=56, x=18$. So the check was for \$18.56.

Solution by Simultaneous Equations

Let x be the number of dollars in the check, and y be the number of cents. Consider the numbers of dollars and cents Ms Smith holds at various times. The original check is for x dollars and y cents. The bank teller gave her y dollars and x cents. After buying the newspaper she has y dollars and $x-50$ cents. We are also told that after buying the newspaper she has three times the amount of the original check; that is, $3 x$ dollars and $3 y$ cents.

Clearly (y dollars plus $x-50$ cents) equals ($3 x$ dollars plus $3 y$ cents). Then, bearing in mind that x and y must both be less than 100 (for the teller's error to make sense), we equate dollars and cents.

As $-50 \leq(x-50) \leq 49$ and $0 \leq 3 y \leq 297$, there is a relatively small number of ways in which we can equate dollars and cents. (If there were many different ways, this whole approach would not be viable.) Clearly, $3 y-(x-50)$ must be divisible by 100. Further, by the above inequalities, $-49 \leq 3 y-(x-50) \leq 347$, giving us four multiples of 100 to check.

If $3 y-(x-50)=0$, then we must have $3 x=y$, giving $x=-25 / 4, y=-75 / 4$.
If $3 y-(x-50)=100$, then (to balance) we must have $3 x-y=-1$, giving $x=47 / 8, y=149 / 8$.
If $3 y-(x-50)=200$, then we must have $3 x-y=-2$, giving $x=18, y=56$.
If $3 y-(x-50)=300$, then we must have $3 x-y=-3$, giving $x=241 / 8, y=747 / 8$.
There is only one integer solution; so the check was for $\$ 18.56$.
Problem 2: [Nick's Math Puzzle \#7] Let the original pile have n coconuts. Let a be the number of coconuts in each of the five piles made by the first man, b the number of coconuts in each of the five piles made by the second man, and so on.

Writing a Diophantine equation to represent the actions of each man, we have
$n=5 a+1$ if and only if $n+4=5(a+1)$
$4 a=5 b+1$ if and only if $4(a+1)=5(b+1)$
$4 b=5 c+1$ if and only if $4(b+1)=5(c+1)$
$4 c=5 d+1$ if and only if $4(c+1)=5(d+1)$
$4 d=5 e+1$ if and only if $4(d+1)=5(e+1)$
Hence $n+4=5 *(5 / 4)^{4}(e+1)$, and so $n=\left(5^{5} / 4^{4}\right)(e+1)-4$.
Note that, since 5 and 4 are relatively prime, $5^{5} / 4^{4}=3125 / 256$ is a fraction in its lowest terms. Hence the only integer solutions of the above equation are where $e+1$ is a multiple of 44 , whereupon $d+1, c+1, b+1$, and $a+1$ are all integers.

So the general solution is $n=3125 r-4$, where r is a positive integer, giving a smallest solution of 3121 coconuts in the original pile.

Newton Level

Problem 3: [MAA-NCS 2007 \#4] The value is $\sqrt{2}+\sqrt{3}-7 / 3$. Note that $\langle x+n\rangle=\langle x\rangle$ for every real x and every integer n, so $<x^{2}+2 x-3>=<(x+1)^{2}>$. Using the substitution $u=x+1$ then we have

$$
\int_{-1}^{1}<x^{2}+2 x-3>d x=\int_{-1}^{1}<(x+1)^{2}>d x=\int_{0}^{2}<u^{2}>d u
$$

For $0 \leq u<1$, we have $0 \leq u^{2}<1$ and $<u^{2}>=u^{2}$. For $1 \leq u<\sqrt{2}$, we have $1 \leq u^{2}<2$ and $<u^{2}>=u^{2}-1$. For
$\sqrt{2} \leq u<\sqrt{3}$, we have $<u^{2}>=u^{2}-2$, and for $\sqrt{3} \leq u<2$, we have $<u^{2}>=u^{2}-3$. Thus

$$
\begin{aligned}
\int_{0}^{2}<u^{2}>d u & =\int_{0}^{1} u^{2} d u+\int_{1}^{\sqrt{2}}\left(u^{2}-1\right) d u+\int_{\sqrt{2}}^{\sqrt{3}}\left(u^{2}-2\right) d u+\int_{\sqrt{3}}^{2}\left(u^{2}-3\right) d u \\
& =\int_{0}^{2} u^{2} d u-1(\sqrt{2}-1)-2(\sqrt{3}-\sqrt{2})-3(2-\sqrt{3}) \\
& =\frac{8}{3}+1-6+\sqrt{2}+\sqrt{3} \\
& =\sqrt{2}+\sqrt{3}-7 / 3
\end{aligned}
$$

Problem 4: [MAA-NCS $2005 \# 8]$ Here one should try to find a pattern in the partial sums, and prove it by induction. The first few partial sums are

$$
S_{1}=\frac{1}{3}, \quad S_{2}=\frac{7}{3 \cdot 5}, \quad S_{3}=\frac{52}{3 \cdot 4 \cdot 7}
$$

The pattern can be seen most readily by comparing with the asserted limit, $1 / 2$. Look at the differences $1 / 2-S_{n}$. Thus we find

$$
S_{1}=\frac{1}{2}\left(1-\frac{1}{3}\right), \quad S_{2}=\frac{1}{2}\left(1-\frac{1}{3 \cdot 5}\right), \quad S_{3}=\frac{1}{2}\left(1-\frac{1}{3 \cdot 5 \cdot 7}\right)
$$

suggesting the formula

$$
S_{n}=\frac{1}{2}\left(1-\frac{1}{3 \cdot 5 \cdots(2 n+1)}\right)
$$

This is easily proved by induction. We have it for $n=1$. Suppose it holds for a particular n. Then

$$
\begin{aligned}
S_{n+1} & =S_{n}+\frac{n+1}{3 \cdot 5 \cdots(2 n+1)(2 n+3)} \\
& =\frac{1}{2}\left(1-\frac{1}{3 \cdot 5 \cdots(2 n+1)}\right)+\frac{n+1}{3 \cdot 5 \cdots(2 n+1)(2 n+3)} \\
& =\frac{1}{2}\left(1-\frac{2 n+3}{3 \cdot 5 \cdots(2 n+1)(2 n+3)}+\frac{2 n+2}{3 \cdot 5 \cdots(2 n+1)(2 n+3)}\right) \\
& =\frac{1}{2}\left(1-\frac{1}{3 \cdot 5 \cdots(2 n+3)}\right)
\end{aligned}
$$

By induction the formula for S_{n} holds and now the limit of the partial sums is seen to be $1 / 2$.

Wiles Level

Problem 5: [Putnam 2006 A1]

$$
\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leq 36\left(x^{2}+y^{2}\right)
$$

We change to cylindrical coordinates, i.e., we put $r=\sqrt{x^{2}+y^{2}}$. Then the given inequality is equivalent to

$$
r^{2}+z^{2}+8 \leq 6 r
$$

or

$$
(r-3)^{2}+z^{2} \leq 1
$$

This defines a solid of revolution (a solid torus); the area being rotated is the disc $(x-3)^{2}+z^{2} \leq 1$ in the $x z$-plane. By Pappus's theorem, the volume of this equals the area of this disc, which is π, times the distance through which the center of mass is being rotated, which is $(2 \pi) 3$. That is, the total volume is $6 \pi^{2}$.

Problem 6: [Putnam 2006 B5] The answer is $1 / 16$. We have

$$
\begin{aligned}
& \int_{0}^{1} x^{2} f(x) d x-\int_{0}^{1} x f(x)^{2} d x \\
& =\int_{0}^{1}\left(x^{3} / 4-x(f(x)-x / 2)^{2}\right) d x \\
& \leq \int_{0}^{1} x^{3} / 4 d x=1 / 16
\end{aligned}
$$

with equality when $f(x)=x / 2$.

