
Math 280 Solutions for September 5

Pythagoras Level

Problem 1: [Nick’s Math Puzzles #5] Solution by Diophantine Equation
Let x be the number of dollars in the check, and y be the number of cents. Then 100y + x − 50 = 3(100x + y). Therefore

97y − 299x = 50.
A standard solution to this type of linear Diophantine equation uses Euclid’s algorithm.
The Euclidean algorithm shows that gcd(97,299) = 1.
To solve 97y − 299x = gcd(97, 299) = 1, we can proceed backwards through the Euclidean algorithm and arrive at: 1 =

37 ∗ 97− 12 ∗ 299
Therefore a solution to 97y − 299x = 1 is y = 37, x = 12. Hence a solution to 97y − 299x = 50 is y = 50 ∗ 37 = 1850,

x = 50 ∗ 12 = 600. It can be shown that all integer solutions of 97y− 299x = 50 are of the form y = 1850 + 299k, x = 600 + 97k,
where k is any integer.

In this case, because x and y must be between 0 and 99, we choose k = −6. This gives y = 56, x = 18. So the check was for
$18.56.

Solution by Simultaneous Equations
Let x be the number of dollars in the check, and y be the number of cents. Consider the numbers of dollars and cents Ms

Smith holds at various times. The original check is for x dollars and y cents. The bank teller gave her y dollars and x cents.
After buying the newspaper she has y dollars and x− 50 cents. We are also told that after buying the newspaper she has three
times the amount of the original check; that is, 3x dollars and 3y cents.

Clearly (y dollars plus x− 50 cents) equals (3x dollars plus 3y cents). Then, bearing in mind that x and y must both be less
than 100 (for the teller’s error to make sense), we equate dollars and cents.

As −50 ≤ (x − 50) ≤ 49 and 0 ≤ 3y ≤ 297, there is a relatively small number of ways in which we can equate dollars and
cents. (If there were many different ways, this whole approach would not be viable.) Clearly, 3y − (x− 50) must be divisible by
100. Further, by the above inequalities, −49 ≤ 3y − (x− 50) ≤ 347, giving us four multiples of 100 to check.
If 3y − (x− 50) = 0, then we must have 3x = y, giving x = −25/4, y = −75/4.
If 3y − (x− 50) = 100, then (to balance) we must have 3x− y = −1, giving x = 47/8, y = 149/8.
If 3y − (x− 50) = 200, then we must have 3x− y = −2, giving x = 18, y = 56.
If 3y − (x− 50) = 300, then we must have 3x− y = −3, giving x = 241/8, y = 747/8.

There is only one integer solution; so the check was for $18.56.

Problem 2: [Nick’s Math Puzzle #7] Let the original pile have n coconuts. Let a be the number of coconuts in each of the five
piles made by the first man, b the number of coconuts in each of the five piles made by the second man, and so on.

Writing a Diophantine equation to represent the actions of each man, we have
n = 5a+ 1 if and only if n+ 4 = 5(a+ 1)
4a = 5b+ 1 if and only if 4(a+ 1) = 5(b+ 1)
4b = 5c+ 1 if and only if 4(b+ 1) = 5(c+ 1)
4c = 5d+ 1 if and only if 4(c+ 1) = 5(d+ 1)
4d = 5e+ 1 if and only if 4(d+ 1) = 5(e+ 1)

Hence n+ 4 = 5 ∗ (5/4)4(e+ 1), and so n = (55/44)(e+ 1)− 4.
Note that, since 5 and 4 are relatively prime, 55/44 = 3125/256 is a fraction in its lowest terms. Hence the only integer

solutions of the above equation are where e+ 1 is a multiple of 44, whereupon d+ 1, c+ 1, b+ 1, and a+ 1 are all integers.
So the general solution is n = 3125r − 4, where r is a positive integer, giving a smallest solution of 3121 coconuts in the

original pile.

Newton Level

Problem 3: [MAA-NCS 2007 #4] The value is
√
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Problem 4: [MAA-NCS 2005 #8] Here one should try to find a pattern in the partial sums, and prove it by induction. The
first few partial sums are

S1 =
1
3
, S2 =

7
3 · 5

, S3 =
52

3 · 4 · 7
The pattern can be seen most readily by comparing with the asserted limit, 1/2. Look at the differences 1/2−Sn. Thus we find
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)
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1
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)
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1
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(
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)
suggesting the formula
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(
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3 · 5 · · · (2n+ 1)

)
.

This is easily proved by induction. We have it for n = 1. Suppose it holds for a particular n. Then

Sn+1 = Sn +
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1
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)
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)
By induction the formula for Sn holds and now the limit of the partial sums is seen to be 1/2.

Wiles Level

Problem 5: [Putnam 2006 A1]
(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).

We change to cylindrical coordinates, i.e., we put r =
√
x2 + y2. Then the given inequality is equivalent to

r2 + z2 + 8 ≤ 6r,

or
(r − 3)2 + z2 ≤ 1.

This defines a solid of revolution (a solid torus); the area being rotated is the disc (x−3)2 +z2 ≤ 1 in the xz-plane. By Pappus’s
theorem, the volume of this equals the area of this disc, which is π, times the distance through which the center of mass is being
rotated, which is (2π)3. That is, the total volume is 6π2.

Problem 6: [Putnam 2006 B5] The answer is 1/16. We have∫ 1

0

x2f(x) dx−
∫ 1

0

xf(x)2 dx

=
∫ 1

0

(x3/4− x(f(x)− x/2)2) dx

≤
∫ 1

0

x3/4 dx = 1/16,

with equality when f(x) = x/2.


