Math 280 Problems for September 14

Problem 1: Given distinct points $a_{1}<a_{2}<a_{3}<\cdots<a_{100}$ on the real line, determine, with proof, the exact set of real numbers x for which the sum

$$
\sum_{i=1}^{100}\left|x-a_{i}\right|
$$

takes its minimal value.
Problem 2: Let $a_{1}, a_{2}, a_{3}, \ldots$ be an infinite sequence of positive integers, and let a new sequence $q_{1}, q_{2}, q_{3}, \ldots$ be de ned by $q_{1}=a_{1}, q_{2}=a_{2} q_{1}+1$, and $q_{n}=a_{n} q_{n+1}+q_{n+2}$ for $n \geq 3$. Prove that no two consecutive q_{n} 's are even.

Problem 3: A function $f(n)$ is defined for all positive integers n as follows: First add the digits of n (in decimal notation) to get a number n_{1}, say; then add the digits of n_{1} to get n_{2}; continue this process until a single digit number is obtained; that last number (between 1 and 9) is called $f(n)$. Thus, for example, $f(989)=8$, since $9+8+9=26,2+6=8$. Prove that, for all positive integers $n, f(1234567 n)=f(n)$.

Problem 4: Given a nonnegative integer n, let \widehat{n} denote the integer obtained by reversing the digits of n in the standard decimal representation; for example, $\widehat{935}=539$. Let $f(n)=n+\widehat{n}, g(n)=n-\widehat{n}$, and $h(n)=f(g(n))$. For example, if $n=935$, then $g(n)=935-539=396$, and $h(n)=f(396)=396+693=1089$ Prove that $h(n)=1089$ for all three digit integers n whose first digit exceeds the last digit by at least 2 .

Problem 5: A polynomial $P(x)$ is known to be of the form

$$
P(x)=x^{15}-9 x^{14}+\cdots-7 .
$$

where the ellipsis (\cdots) represents unknown intermediate terms. It is also known that all roots of $P(x)$ are integers. Find the roots of $P(x)$.

Problem 6: Does there exist a multiple of 2008 whose decimal representation involves only a single digit (such as 11111 or 22222222)?

