Math 280 Problems for September 14

Problem 1: Given distinct points $a_{1}<a_{2}<a_{3}<\cdots<a_{100}$ on the real line, determine, with proof, the exact set of real numbers x for which the sum

$$
\sum_{i=1}^{100}\left|x-a_{i}\right|
$$

takes its minimal value.
[UIUC $2011 \# 1]$ Let $S(x)=\sum_{i=1}^{100}\left|x-a_{i}\right|$ the sum we seek to minimize. By the triangle inequality, we have, for any $i \in\{1,2, \ldots 100\}$,

$$
\left|a_{i}-a_{101-i}\right|=\left|a_{i}-x+x-a_{101-i}\right| \leq\left|a_{i}-x\right|+\left|x-a_{101-i}\right|
$$

Summing over $i=1, \ldots, 50$ we get

$$
\sum_{i=1}^{50}\left|a_{i}-a_{101-i}\right| \leq S(x)
$$

The real numbers x that minimize $S(x)$ are exactly those x for which equality holds. However equality holds in the triangle inequality if and only if $a_{i}-x$ and $x-a_{101-i}$ have the same sign, i.e., if and only if x lies between a_{i} and a_{101-i}. Hence equality for the sum holds if and only if x lies between a_{i} and a_{101-i} for each $i=1,2, \ldots, 50$ i.e., if and only if $a_{50} \leq x \leq a_{51}$. Hence the real numbers that minimize $S(x)$ are exactly those in the interval $a_{50} \leq x \leq a_{51}$.

Problem 2: Let $a_{1}, a_{2}, a_{3}, \ldots$ be an infinite sequence of positive integers, and let a new sequence $q_{1}, q_{2}, q_{3}, \ldots$ be defined by $q_{1}=a_{1}, q_{2}=a_{2} q_{1}+1$, and $q_{n}=a_{n} q_{n+1}+q_{n+2}$ for $n \geq 3$. Prove that no two consecutive q_{n} 's are even.
[UIUC 2010 \#1] We argue by contradiction. Suppose there exist pairs of consecutive q_{n} 's that are both even. Among these let $\left(q_{i}, q_{i+1}\right)$ be the pair with smallest index i. First note that, if q_{1} is even, then $q_{2}=a_{2} q_{1}+1$ is odd. Thus q_{1} and q_{2} cannot both be even, so the minimal index i such that q_{i} and q_{i+1} are both even must be at least 2 . By the given recurrence we have $q_{i-1}=q_{i+1}-a_{i+1} q_{i}$, so q_{i-1} is the difference of two even numbers and therefore must itself be even. Hence (q_{i-1}, q_{i}) is a pair of consecutive even terms among the q_{n} 's, contradicting the minimality of i. Thus there do not exist consecutive even members of the sequence.

Problem 3: A function $f(n)$ is defined for all positive integers n as follows: First add the digits of n (in decimal notation) to get a number n_{1}, say; then add the digits of n_{1} to get n_{2}; continue this process until a single digit number is obtained; that last number (between 1 and 9) is called $f(n)$. Thus, for example, $f(989)=8$, since $9+8+9=26,2+6=8$. Prove that, for all positive integers $n, f(1234567 n)=f(n)$.
[UIUC $2010 \# 2$] We use congruences modulo 9 . By an extension of the test for divisibility by 9 , any positive integer is congruent modulo 9 to the sum of its decimal digits. Since $f(n)$ is obtained by an iteration of the "sum of digits" function, it follows that $f(n)$ satisfies the congruence $f(n) \equiv n \bmod 9$. Moreover, since $f(n)$ is in the set $\{1,2, \ldots, 9\}, f(n)$ is uniquely defined by its congruence modulo 9 . Thus, to prove the claim, it suffices to show that, for all positive integers n,

$$
1234567 \cdot n \equiv n \quad \bmod 9
$$

But the latter follows from the fact that the number 1234567 is congruent to $1+2+3+4+5+6+7=28 \equiv 1$ modulo9.
Problem 4: Given a nonnegative integer n, let \widehat{n} denote the integer obtained by reversing the digits of n in the standard decimal representation; for example, $\widehat{935}=539$. Let $f(n)=n+\widehat{n}, g(n)=n-\widehat{n}$, and $h(n)=f(g(n))$. For example, if $n=935$, then $g(n)=935-539=396$, and $h(n)=f(396)=396+693=1089$ Prove that $h(n)=1089$ for all three digit integers n whose first digit exceeds the last digit by at least 2 .
[UIUC $2009 \# 1]$ Let n denote an integer of the given form, i.e., $n=a_{2} a_{1} a_{0}$ with $a 2 \geq a_{0}+2$. Then

$$
\begin{aligned}
n & =100 a_{2}+10 a_{1}+a_{0}, \\
\widehat{n} & =100 a_{0}+10 a_{1}+a_{2}, \\
g(n) & =n-\widehat{n} \\
& =100 \cdot\left(a_{2}-a_{0}\right)-\left(a_{2}-a_{0}\right) \\
& =100 \cdot\left(a_{2}-a_{0}-1\right)+10 \cdot 9+1 \cdot\left(10-a_{2}+a_{0}\right), \\
\widehat{g(n)} & =100 \cdot\left(10-a_{2}+a_{0}\right)+10 \cdot 9+1 \cdot\left(a_{2}-a_{0}-1\right), \\
h(n) & =g(n)+\widehat{g(n)} \\
& =100 \cdot(10-1)+10 \cdot(9+9)+(10-1)=1089,
\end{aligned}
$$

as claimed. Note that the given condition on the first and last digits of n, namely $a_{2}-a_{0} \geq 2$, ensures that the cofficients $a_{2}-a_{0}-1$ and $10-a_{2}+a_{0}$ in the above expressions are integers in the interval $[1,9]$, so these expressions indeed represent proper decimal expansions.

Problem 5: A polynomial $P(x)$ is known to be of the form

$$
P(x)=x^{15}-9 x^{14}+\cdots-7 .
$$

where the ellipsis (\cdots) represents unknown intermediate terms. It is also known that all roots of $P(x)$ are integers. Find the roots of $P(x)$.
[UIUC $2009 \# 4$] Since $P(x)$ has degree 15 , it has 15 roots (counted with multiplicity). Let $r_{1}, r_{2}, \ldots, r_{15}$ denote these roots, which, by assumption, are all integers. Since $P(x)$ has leading term 1, it can be written as

$$
P(x)=\prod_{i=1}^{15}\left(x-r_{i}\right)
$$

Expanding this product we obtain

$$
P(x)=x^{15}+\left(\sum_{i=1}^{15}\left(-r_{i}\right)\right) x^{14}+\cdots+\prod_{i=1}^{15}\left(-r_{i}\right)
$$

Comparing this expression with the given form of $P(x)$, we get

$$
\sum_{i=1}^{15}\left(r_{i}\right)=9
$$

and

$$
\prod_{i=1}^{15}\left(r_{i}\right)=7
$$

The product forces one of the roots to be 7 or -7 , and the remaining 14 roots to be 1 or -1 . However, in the case when one of the roots is -7 the sum of all roots can be at most $-7+14=7$, contradicting the sum requirement. Hence one root must be 7 , and the other 14 roots must be 1 or -1 . Inspection finds 1 of multiplicity 8 and -1 of multiplicity 6 gives the desired sum. So the roots are

$$
7, \underbrace{1, \ldots 1}_{8 \text { times }}, \underbrace{-1, \cdots-1}_{6 \text { times }}
$$

Problem 6: Does there exist a multiple of 2008 whose decimal representation involves only a single digit (such as 11111 or 22222222)?
[UIUC $2008 \# 1$] The answer is yes; specifically, we will show that there exists a multiple of 2008 of the form 888 . . . 8. Given a digit $d \in\{1,2, \ldots, 9\}$, let $N_{d, k}$ be the number whose decimal representation consists of k digits d. Note that

$$
N_{d, k}=d \sum_{i=0}^{k-1} 10^{i}=\frac{d\left(10^{k}-1\right)}{9}
$$

Thus, a given positive integer m has a multiple of this form if and only if the congruence $\left(^{*}\right) d\left(10^{k}-1\right) \equiv 0 m o d 9 m$ has a solution k. We apply this with $d=8$ and $m=2008$. Then $\left(^{*}\right)$ is equivalent to $\left(^{* *}\right) 10^{k}-1 \equiv 0 \bmod 9(2008 / 8)=9251$. Since $10^{k} \equiv 1^{k}=1$ $\bmod 9$ for any positive integer $k,\left({ }^{* *}\right)$ is equivalent to $\left({ }^{* * *}\right) 10^{k} \equiv 1 \bmod 251$. Now, 251 is prime, so by Fermats Theorem, we have $10^{251} 1 \equiv 1 \bmod 251$. Thus, $\left({ }^{* * *}\right)$ holds for $k=250$, and so the number $N_{8,250}=\underbrace{88 \cdots 8}_{250}$ is divisible by 2008 .

