
Math 280 Problems for September 14

Problem 1: Given distinct points a1 < a2 < a3 < · · · < a100 on the real line, determine, with proof, the exact set of real
numbers x for which the sum

100∑
i=1

|x− ai|

takes its minimal value.

[UIUC 2011 #1] Let S(x) =
∑100

i=1 |x − ai| the sum we seek to minimize. By the triangle inequality, we have, for any
i ∈ {1, 2, ...100},

|ai − a101−i| = |ai − x + x− a101−i| ≤ |ai − x|+ |x− a101−i|

Summing over i = 1, ..., 50 we get
50∑
i=1

|ai − a101−i| ≤ S(x)

The real numbers x that minimize S(x) are exactly those x for which equality holds. However equality holds in the triangle
inequality if and only if ai−x and x− a101−i have the same sign, i.e., if and only if x lies between ai and a101−i. Hence equality
for the sum holds if and only if x lies between ai and a101−i for each i = 1, 2, ..., 50 i.e., if and only if a50 ≤ x ≤ a51. Hence the
real numbers that minimize S(x) are exactly those in the interval a50 ≤ x ≤ a51.

Problem 2: Let a1, a2, a3, . . . be an infinite sequence of positive integers, and let a new sequence q1, q2, q3, . . . be defined by
q1 = a1, q2 = a2q1 + 1, and qn = anqn+1 + qn+2 for n ≥ 3. Prove that no two consecutive qn’s are even.

[UIUC 2010 #1] We argue by contradiction. Suppose there exist pairs of consecutive qn’s that are both even. Among these
let (qi, qi+1) be the pair with smallest index i. First note that, if q1 is even, then q2 = a2q1 + 1 is odd. Thus q1 and q2 cannot
both be even, so the minimal index i such that qi and qi+1 are both even must be at least 2. By the given recurrence we have
qi−1 = qi+1 − ai+1qi, so qi−1 is the difference of two even numbers and therefore must itself be even. Hence (qi−1, qi) is a pair
of consecutive even terms among the qn’s, contradicting the minimality of i. Thus there do not exist consecutive even members
of the sequence.

Problem 3: A function f(n) is defined for all positive integers n as follows: First add the digits of n (in decimal notation) to
get a number n1, say; then add the digits of n1 to get n2; continue this process until a single digit number is obtained; that last
number (between 1 and 9) is called f(n). Thus, for example, f(989) = 8, since 9 + 8 + 9 = 26, 2 + 6 = 8. Prove that, for all
positive integers n, f(1234567n) = f(n).

[UIUC 2010 #2] We use congruences modulo 9. By an extension of the test for divisibility by 9, any positive integer is
congruent modulo 9 to the sum of its decimal digits. Since f(n) is obtained by an iteration of the “sum of digits” function,
it follows that f(n) satisfies the congruence f(n) ≡ n mod 9. Moreover, since f(n) is in the set {1, 2, . . . , 9}, f(n) is uniquely
defined by its congruence modulo 9. Thus, to prove the claim, it suffices to show that, for all positive integers n,

1234567 · n ≡ n mod 9

But the latter follows from the fact that the number 1234567 is congruent to 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 ≡ 1modulo9.

Problem 4: Given a nonnegative integer n, let n̂ denote the integer obtained by reversing the digits of n in the standard decimal
representation; for example, 9̂35 = 539. Let f(n) = n + n̂ , g(n) = n − n̂ , and h(n) = f(g(n)). For example, if n = 935, then
g(n) = 935− 539 = 396, and h(n) = f(396) = 396 + 693 = 1089 Prove that h(n) = 1089 for all three digit integers n whose first
digit exceeds the last digit by at least 2.

[UIUC 2009 #1] Let n denote an integer of the given form, i.e., n = a2a1a0 with a2 ≥ a0 + 2. Then

n = 100a2 + 10a1 + a0,

n̂ = 100a0 + 10a1 + a2,

g(n) = n− n̂

= 100 · (a2 − a0)− (a2 − a0)

= 100 · (a2 − a0 − 1) + 10 · 9 + 1 · (10− a2 + a0),

ĝ(n) = 100 · (10− a2 + a0) + 10 · 9 + 1 · (a2 − a0 − 1),

h(n) = g(n) + ĝ(n)

= 100 · (10− 1) + 10 · (9 + 9) + (10− 1) = 1089,



as claimed. Note that the given condition on the first and last digits of n, namely a2 − a0 ≥ 2, ensures that the cofficients
a2 − a0 − 1 and 10 − a2 + a0 in the above expressions are integers in the interval [1, 9], so these expressions indeed represent
proper decimal expansions.

Problem 5: A polynomial P (x) is known to be of the form

P (x) = x15 − 9x14 + · · · − 7.

where the ellipsis (· · · ) represents unknown intermediate terms. It is also known that all roots of P (x) are integers. Find the
roots of P (x).

[UIUC 2009 #4] Since P (x) has degree 15, it has 15 roots (counted with multiplicity). Let r1, r2, ..., r15 denote these roots,
which, by assumption, are all integers. SinceP (x) has leading term 1, it can be written as

P (x) =

15∏
i=1

(x− ri).

Expanding this product we obtain

P (x) = x15 +

(
15∑
i=1

(−ri)

)
x14 + · · ·+

15∏
i=1

(−ri).

Comparing this expression with the given form of P (x), we get

15∑
i=1

(ri) = 9

and
15∏
i=1

(ri) = 7.

The product forces one of the roots to be 7 or −7, and the remaining 14 roots to be 1 or −1. However, in the case when one of
the roots is −7 the sum of all roots can be at most −7 + 14 = 7, contradicting the sum requirement. Hence one root must be 7,
and the other 14 roots must be 1 or −1. Inspection finds 1 of multiplicity 8 and −1 of multiplicity 6 gives the desired sum. So
the roots are

7, 1, . . . 1︸ ︷︷ ︸
8 times

,−1, · · · − 1︸ ︷︷ ︸
6 times

Problem 6: Does there exist a multiple of 2008 whose decimal representation involves only a single digit (such as 11111 or
22222222)?

[UIUC 2008 #1] The answer is yes; specifically, we will show that there exists a multiple of 2008 of the form 888 . . . 8.
Given a digit d ∈ {1, 2, ..., 9}, let Nd,k be the number whose decimal representation consists of k digits d. Note that

Nd,k = d

k−1∑
i=0

10i =
d(10k − 1)

9

Thus, a given positive integer m has a multiple of this form if and only if the congruence (*) d(10k−1) ≡ 0mod9m has a solution
k. We apply this with d = 8 and m = 2008. Then (*) is equivalent to (**) 10k− 1 ≡ 0mod9(2008/8) = 9251. Since 10k ≡ 1k = 1
mod 9 for any positive integer k, (**) is equivalent to (***) 10k ≡ 1 mod 251. Now, 251 is prime, so by Fermats Theorem, we
have 102511 ≡ 1 mod 251. Thus, (***) holds for k = 250, and so the number N8,250 = 88 · · · 8︸ ︷︷ ︸

250

is divisible by 2008.


