Math 280 Problems for September 21

Pythagoras Level

Problem 1: The set S contains ten numbers. The mean of the numbers in S is 23 . The mean of the six smallest numbers in S is 15 . The mean of the six largest numbers in S is 30 . What is the median of the numbers in S ?
[2011NJUMC Ind. $\# 2$] Let $x_{1}, x_{2}, \ldots x_{10}$ denote the ten numbers. We are given

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{10} & =23 \cdot 10 \\
x_{1}+x_{2}+\cdots+x_{6} & =15 \cdot 6 \\
x_{5}+x_{6}+\cdots+x_{10} & =30 \cdot 6
\end{aligned}
$$

Subtracting the first equation from the sum of the other two gives

$$
x_{5}+x_{6}=15 \cdot 6+30 \cdot 6-23 \cdot 10=40
$$

Thus the median is $40 / 2=20$.
Problem 2: In the figure below, A and B are the points $(2,0)$ and $(2,5)$ respectively (O is the origin). If right triangle $O A B$ is flipped about its hypotenuse as shown, what is the slope of the line through O and A^{\prime} ?

[2011NJUMC Ind. \# 6] Let $\theta=\angle A O B$. Then the slope of $O A^{\prime}$ is given by

$$
m=\tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2(5 / 2)}{1-(5 / 2)^{2}}=-\frac{20}{21}
$$

Newton Level

Problem 3: Let $f_{1}(x)=f(x)=\frac{1}{1+2 x}$. Then for $n>1$, left $f_{n}(x)=f\left(f_{n-1}(x)\right)$. So, for example, $f_{3}(x)=f(f(f(x)))$. Compute $f_{7}^{\prime}(-1)$.
[2011NJUMC Ind. \#4] The important fact to realize here is that $x=-1$ is a fixed point for f. In other words, $f(-1)=-1$, and so by induction $f_{n}(-1)=-1$. Now, by the chain rule, notice that

$$
\begin{aligned}
f_{n}^{\prime}(x) & =\left[f\left(f_{n-1}(x)\right]^{\prime}=f^{\prime}\left(f_{n-1}(x)\right) f_{n-1}^{\prime}(x)\right. \\
f_{n}^{\prime}(-1) & =f^{\prime}\left(f_{n-1}(-1)\right) f_{n-1}^{\prime}(-1) \\
& =f^{\prime}(-1) f_{n-1}^{\prime}(-1)
\end{aligned}
$$

In other words, to get the derivative of the next f_{n} at $x=-1$, we simply multiply the derivative of the previous f_{n-1} at $x=-1$ by the same constant: $f^{\prime}(-1)$. So we really only need to compute the very first $f^{\prime}(-1)$, and then the rest of the derivatives will follow easy from the recursive formula. Since

$$
f^{\prime}(x)=\frac{-2}{(1+2 x)^{2}} \text { and so } f^{\prime}(-1)=-2
$$

we have $f_{n}^{\prime}(-1)=(-2)^{n}$ and in particular $f_{7}^{\prime}(-1)=(-2)^{7}=-128$.

Problem 4: Find the limit

$$
\lim _{n \rightarrow \infty}\left[\frac{\left(1+\frac{1}{n}\right)^{n}}{e}\right]^{n}
$$

[2011NJUMC Ind. \#13] First we take the natural log of the nth term, arriving at $n(n \ln (1+1 / n)-1)$. To compute the limit we rewrite

$$
\lim _{n \rightarrow \infty} n(n \ln (1+1 / n)-1)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{1}{n}\right)-\frac{1}{n}}{\frac{1}{n^{2}}}
$$

Using L'Hospital we arrive at a limit of $-1 / 2$, so the original limit is $e^{-1 / 2}=\frac{1}{\sqrt{e}}$.

Wiles Level

Problem 5: If A is the matrix $\left(\begin{array}{cc}1 & 3 \\ -1 & 1\end{array}\right)$, determine the series:

$$
A-\frac{1}{3} A^{2}+\frac{1}{9} A^{3}+\cdots+\left(-\frac{1}{3}\right)^{n} A^{n+1}+\cdots
$$

[2011NJUMC Ind. \#12] Set the sum equal to B, and multiply both sides by $I+\frac{1}{3} A$.

$$
\left(I+\frac{1}{3} A\right)\left(A-\frac{1}{3} A^{2}+\frac{1}{9} A^{3}+\cdots+\left(-\frac{1}{3}\right)^{n} A^{n+1}+\cdots\right)=\left(I+\frac{1}{3} A\right) B
$$

The left side telescopes and we're left with $A=\left(1+\frac{1}{3} A\right) B$. Thus

$$
\begin{aligned}
B & =\left(1+\frac{1}{3} A\right)^{-1} B \\
& =3\left(\begin{array}{cc}
4 & -3 \\
-1 & 4
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & -3 \\
-1 & 1
\end{array}\right) \\
& =\frac{3}{13}\left(\begin{array}{cc}
4 & 3 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & -3 \\
-1 & 1
\end{array}\right) \\
& =\frac{3}{13}\left(\begin{array}{cc}
1 & -9 \\
-3 & 1
\end{array}\right)
\end{aligned}
$$

Problem 6: Compute the area of the region which lies between the x-axis and the curve, $y=e^{-x} \sin (\pi x)$, for $x \geq 0$.
[2011NJUMC Team \#5] Integration by parts give us the following anti-derivative for the function.

$$
\int e^{-x} \sin (\pi x) d x=\frac{-e^{-x}}{\pi^{2}+1}(\pi \cos (\pi x)+\sin (\pi x))
$$

Now, we can't simply use the anti-derivative to evaluate the integral from 0 to 1 , because we want area below the x-axis to count as positive area. So the key is to use the anti-derivative to get a general formula for the integral from n to $n+1$ of the absolute value.

$$
\begin{aligned}
\int_{n}^{n+1}\left|e^{-x} \sin (\pi x)\right| d x & =\frac{\pi}{\pi^{2}+1}\left|e^{-n} \cos (\pi n)-e^{-(n+1)} \cos ((n+1) \pi)\right| \\
& =\frac{\pi}{\pi^{2}+1}\left(e^{-n}+e^{-(n+1)}\right) \\
& =\frac{\pi(e+1)}{\left(\pi^{2}+1\right) e^{n+1}}
\end{aligned}
$$

Now we see that the areas over the intervals, $[n, n+1]$, form a geometric sequence, whose sum is given by

$$
A=\sum_{n=0}^{\infty} \frac{\pi(e+1)}{\left(\pi^{2}+1\right) e^{n+1}}=\frac{\pi(e+1)}{\left(\pi^{2}+1\right) e} \cdot \frac{1}{1-1 / e}=\frac{\pi(e+1)}{\left(\pi^{2}+1\right)(e-1)}
$$

