Math 280 Problems for September 6

Pythagoras Level

\#1 If n is a positive integer, let $r_{b}(n)$ denote the number obtained by reversing the order of the base- b digits of n. For example, $r_{9}(317)=r_{9}\left(382_{9}\right)=283_{9}=237$ and $r_{5}(110)=r_{5}\left(410_{5}\right)=14_{5}=9$. Fix a base b. For how many two b-digit positive integers n is the sum of n and $r_{b}(n)$ a perfect square?
\#2 Alan and Barbara play a game in which they take turns filling entries of an initially empty 2010×2010 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

Newton Level

\#3 Let $g(x)=e^{x^{2}}$. Find $g^{(2010)}(0)$, i.e., the 2010th derivative of g evaluated at $x=0$.
\#4 Consider the sequence $a_{1}=1, a_{n+1}=\sqrt{2}^{a_{n}}$. Show that $\lim _{n \rightarrow \infty} a_{n}$ exists and compute its value.

Wiles Level

$\# 5$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers x and y.
\#6 Consider the infinite series

$$
\frac{1}{1}+\frac{1}{10}+\frac{1}{11}+\frac{1}{100}+\frac{1}{101}+\frac{1}{110}+\frac{1}{111}+\cdots
$$

whose terms are the reciprocals of all positive integers which have only 0 's and 1 's as digits (taken in the implied order). Does this series converge or diverge? Prove your answer.

