Math 280 Problems for September 20

Pythagoras Level

Problem 1: How many of the integers from 1 to 2008 may be written as the sum of two or more distinct integral powers of 3 ? (For example, $28=3^{0}+3^{3}$ is such an integer.) Justify your answer.

Problem 2: Let $A B C$ be an isosceles triangle $(A B=A C)$ with $\angle B A C=20^{\circ}$. Point D is on side $A C$ such that $\angle D B C=60^{\circ}$. Point E is on side $A B$ such that $\angle E C B=50^{\circ}$. Find, with proof, the measure of $\angle E D B$.

Newton Level
Problem 3: Find the value of the infinite product

$$
P=\frac{7}{9} \times \frac{26}{28} \times \frac{63}{65} \times \cdots \times \frac{k^{3}-1}{k^{3}+1} \times \cdots
$$

Problem 4: Find all real solutions (x, y) of the system

$$
\begin{aligned}
|x|+x+y & =10 \\
x+|y|-y & =12
\end{aligned}
$$

Justify your answer.

Wiles Level

Problem 5: Consider a set S with binary operation \circledast, i.e. for each $a, b \in S, a \circledast b \in S$. Assume $(a \circledast b) \circledast a=b$ for all $a, b \in S$. Prove that $a \circledast(b \circledast a)=b$ for all $a, b \in S$. Note: We do not know in general if $a \circledast b=b \circledast a$ (commutivity) or if $a \circledast(b \circledast c)=(a \circledast b) \circledast c$ (associativity).

Problem 6: Let f be a real function satisfying $f(x)+y=f(x+y)$ for all real x and y. Assume that $f(0)$ is a positive integer, and that $f(2) \mid f(5)$. Find $f(2008)$. Note: For integers m and n, the symbol $m \mid n$ means that m divides n.

