Math 280 Problems for September 27

Pythagoras Level

Problem 1: Find all pairs of real numbers (x, y) satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right)
\end{aligned}
$$

Problem 2: Suppose n fair 6-sided dice are rolled simultaneously. What is the expected value of the score on the highest valued die?

Newton Level

Problem 3: Let f be a continuous function on $[0,1]$, differentiable on $(0,1)$, and such that $f(1)=0$. Show that for some $c \in(0,1)$,

$$
\frac{f(c)}{c}=-f^{\prime}(c) .
$$

Problem 4: Let $f:[0,1) \rightarrow \mathbb{R}$ be a continuous, strictly increasing function, such that

$$
(f(x))^{3}=\int_{0}^{x} t(f(t))^{2} d t
$$

for every $x \geq 0$. Show that for every $x \geq 0$ we have $f(x)=\frac{x^{2}}{6}$.

Wiles Level

Problem 5: Given that a and b are real numbers satisfying $a^{3}-3 a b^{2}=39$ and $b^{3}-3 a^{2} b=\sqrt{487}$, determine $a^{2}+b^{2}$.
Problem 6: Let f be a nonconstant polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$.

