Math 280 Problems for October 4

Pythagoras Level

Problem 1: Let $f(n)=25^{n}-72 n-1$. Determine, with proof, the largest integer M such that $f(n)$ is divisible by M for every positive integer n.

Problem 2: Evaluate

$$
\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\ldots}}}
$$

Express your answer in the form $\frac{a+b \sqrt{c}}{d}$, where a, b, c, d are integers.
Hint: $\left(x^{2}-a x+1\right)\left(x^{2}+a x+1\right)=\left(x^{2}\right)^{2}-\left(a^{2}-2\right) x^{2}+1$.

Newton Level

Problem 3: Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

Problem 4: Let $n \geq 2$ be an integer and define $f(x)=1-x^{n}$. For each $t \in(0,1)$, let A_{t} denote the area of the triangle in the first quadrant formed by the x-axis, y-axis, and the tangent line to $f(x)$ at $x=t$. Find $t \in(0,1)$ so that A_{t} is a minimum.

Wiles Level

Problem 5: Let $n \geq 1$. Pick at random a function

$$
f:\{1, \ldots, n\} \rightarrow\{1,2,3\}
$$

What is the probability P of f not being onto (surjective)?
Problem 6: Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T and that the product of any three elements of U is in U, show that at least one of the two subsets T, U is closed under multiplication.

