Math 280 Problems for October 11

Pythagoras Level

Problem 1: Let N be the product of all positive divisors of 10^{5}. Find $\log _{10} N$.
Problem 2: Solve for $0 \leq x \leq 1$:

$$
\log _{x} 4-\log _{2} x=1
$$

Newton Level

Problem 3: Evaluate

$$
\left(\frac{1}{3}\right)^{1 / 5}\left(\frac{1}{9}\right)^{1 / 25}\left(\frac{1}{27}\right)^{1 / 125} \ldots
$$

Problem 4: Calculate

$$
\lim _{x \rightarrow \infty} \int_{0}^{x} x e^{t^{2}-x^{2}} d t
$$

Wiles Level

Problem 5: Sarah intended to multiply a two-digit number and a three-digit number, but she left out the multiplication sign and simply placed the two-digit number to the left of the three-digit number, thereby forming a five-digit number. This number is exactly nine times the product Sarah should have obtained. What is the sum of the two-digit number and the three-digit number?

Problem 6: Suppose a_{n} and b_{n} satisfy the recursive definitions:

$$
a_{n+1}=2\left(a_{n}+b_{n}\right) \quad \text { and } \quad b_{n+1}=2 b_{n}
$$

for all $n \in \mathbb{N}$. Given that there exist constants x, y, z, w, such that

$$
a_{n+2008}=x a_{n}+y b_{n} \quad \text { and } \quad b_{n+2008}=z a_{n}+w b_{n}
$$

Find x, y, z, w.

