Math 280 Problems for October 18

Pythagoras Level

Problem 1: Given that

$$
\sqrt[3]{r}+\frac{1}{\sqrt[3]{r}}=3
$$

compute

$$
r^{3}+\frac{1}{r^{3}}
$$

Problem 2: The positive numbers r and t are related by the fact that if the radius r of a circle is increased by t, the area is doubled. Express r as a function of t.

Newton Level

Problem 3: Find a real number r such that if an integer $n \geq r$, then

$$
\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n^{2}} \geq 2008
$$

Problem 4: Let $f(x)=\int_{0}^{x} e^{-t^{2}} d t$. Given that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$, evaluate

$$
\int_{0}^{\infty} e^{-x^{2}+f(x)} d x
$$

Wiles Level

Problem 5: A card shuffling machine always rearranges cards in the same way relative to the order in which they are given to it. The thirteen spades arranged in the order

$$
A, 2,3,4,5,6,7,8,9,10, J, Q, K
$$

are put into the machine, shuffled, and then the shuffled cards are put into the machine and shuffled again. If at this point the order of the cards is

$$
3, K, 10,2, Q, 9,4, J, 8,6,7, A, 5
$$

what was the order of the cards after the first shuffle?
Problem 6: For positive numbers r, let $F(r)$ denote the fractional part of r; i.e., $F(r)=r-\lfloor r\rfloor$. Thus, e.g., $F(8 / 3)=2 / 3$. Find a positive number r such that

$$
F(r)+F\left(\frac{1}{r}\right)=1
$$

