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1 Introduction

The rational numbers can be completed with respect to the standard absolute
value and this produces the real numbers. However, there are other absolute
values on the rationals besides the standard one. Completing the rationals with
respect to one of these produces the p-adic numbers. In this paper, we take
some basic number theory concepts and apply them to rational p-adic numbers.
Using these concepts, a p-adic division algorithm is developed along with a
p-adic Euclidean Algorithm. These algorithms produce a generalized greatest
common divisor in the p-adics along with a p-adic simple continued fraction. In
Section 2, we describe the p-adic numbers, and in Section 3 we present our p-
adic Division Algorithm and Euclidean Algorithm. In Section 4, we show some
applications, including a connection to Browkin’s p-adic continued fractions,
which motivatored our investigations in the first place. Finally, in Section 5, we
give some open questions for further study.

2 p-adic Numbers

Since we will use different absolute value functions in this paper, to avoid con-
fusion we will denote the standard absolute value as | · |∞ rather than | · |. For
each prime p there exists an absolute value on the rationals | · |p : Q→ Q defined
by ∣∣∣a

b

∣∣∣
p

= pv(b)−v(a)

where v(n) is the number of times p divides the integer n. Also |0|p = 0. This
is called a p-adic absolute value, and in the context of measuring the size of a
number (i.e. its distance to zero), it states that the more a rational number is
divisible by p, the smaller it is. For example,

|162|3 = 3−4 <

∣∣∣∣
5
27

∣∣∣∣
3

= 33.

So 162 is “smaller” than 5
27 in the 3-adics.
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Completing the rationals with respect to the p-adic absolute value yields
Qp, the p-adic numbers. Let p be an odd prime for the remainder of the paper.
Then there are a few different ways to think about p-adic numbers ([2],[3], [4],
[5]) but for the purposes of this paper we will consider them in the following
way.

Definition 1. An element ζ ∈ Qp is a Laurent series in the odd prime p,

ζ =
∞∑

j=m

cjp
j = cmpm + cm+1p

m+1 + cm+2p
m+2 + . . . (1)

where m is a (possibly negative) integer and cj ∈
{

1−p
2 , . . . , p−1

2

}
.

Note that in the standard absolute value, the p-series in (1) would only
converge if it had a finite number of terms. However, under the p-adic absolute
value, each term is in fact getting smaller, and it can be shown [3] that all such
infinite Laurent series in p converge under the p-adic absolute value. It’s also
worth noting that the rational numbers are a subset of the p-adics, although
they are slightly disguised. For example, 1/2 in the 7-adics is given by the power
series

4 + 3 · 7 + 3 · 72 + 3 · 73 + · · · .

Since the geometric series test still applies to the p-adic absolute value and to
convergence in Qp, then it gives the following,

4 + 3 · 7 + 3 · 72 + 3 · 73 + · · · = 1 + 3
(

1
1− 7

)
=

1
2
.

For the remainder of the paper we will use the fractional representation instead
of the p-series for rationals elements of Q ⊂ Qp.

Using the notation in (1), we can define v(ζ) = m, thus |ζ|p = p−m. Further,
every ζ ∈ Qp\{0} can be written as ζ = upε, where ε = v(ζ) and |u|p = 1. We
also have the standard properties of a non-archimedean norm:

|ζ1ζ2|p = |ζ1|p|ζ2|p and |ζ1 + ζ2|p ≤ max(|ζ1|p, |ζ2|p).
The non-archimedean triangle inequality gives equality if |ζ1|p 6= |ζ2|p.

3 The p-adic Division Algorithm and Euclidean
Algorithm

Both the division algorithm and the Euclidean algorithm are elements of clas-
sical number theory. With the goal of recreating the real aspects of classical
number theory in the p-adics, we now re-invent these two important classical
algorithms. Let Z

[
1
p

]
=

{
m
pk | m, k ∈ Z

}
. Notice that Z

[
1
p

]
is closed under

addition and multiplication; in fact, it is a subring of Q.
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Theorem 1 (p-adic Division Algorithm). Let p be an odd prime. Then given
any σ and τ ∈ Qp where τ 6= 0, there exists uniquely q ∈ Z[

1
p

]
with |q|∞ < p

2 ,
and η ∈ Qp with |η|p < |τ |p such that

σ = qτ + η.

Proof. If |σ|p < |τ |p, then let q = 0 and η=σ. Otherwise, write σ=spv(σ),
τ=tpv(τ) where |s|p = |t|p = 1. Let

q = qpv(σ)−v(τ),

where q ∈ Z such that q ≡ st−1 mod pv(τ)−v(σ)+1 and |q|∞ < pv(τ)−v(σ)+1/2.
Then |q|∞ < p

2 . Then let η = spv(σ) − qtpv(τ) = (s− qt)pv(σ). Thus, v(τ) + 1 ≤
v(η) and therefore |η|p < |τ |p.

To prove uniqueness, suppose σ = τq + η = τq′ + η′ where q = m
pk , and

q′ = m′
pk . Then, τ(q − q′) = η′ − η. Thus,

|τ |p|q − q′|p = |τ(q − q′)|p = |η′ − η|p ≤ max(|η|p, |η′|p) < |τ |p,

which implies that p | q − q′ = m−m′
pk . Thus, pk+1 | m − m′. However, since

|q − q′|∞ < p, then |m−m′|∞ < pk+1. Hence, m = m′, q = q′, and η = η′.

Note in the proof of Theorem 1 that if q 6= 0, then in fact p - q, and therefore
v(q) = v(σ)− v(τ) ≤ 0; that is |q|p ≥ 1.

Since we now have a division algorithm in the p-adics, we can iterate the
process in a way similar to the classical Euclidean Algorithm.

Definition 2 (p-adic Euclidean Algorithm). Let p be an odd prime. The p-adic
Euclidean Algorithm applied to σ and τ ∈ Qp and where τ 6= 0 is as follows.
First, apply Theorem 1 to σ and τ to produce

σ = q1τ + η1. (2)

In each subsequent step “shift to the left” and apply Theorem 1 again,

τ = q2η1 + η2

η1 = q3η2 + η3

...
ηi−2 = qiηi−1 + ηi (3)

...

This process either continues indefinitely or stops when ηi = 0. The outputs
of this algorithm are the sequences {qi} and {ηi}. When appropriate we will
consider the inputs as σ = η−1 and τ = η0.
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Example. The 7-adic Euclidean Algorithm applied to 181625
11 and 10555

2 yields

181625
11

= (2)
(

10555
2

)
+

(
9360
11

· 71

)

10555
2

=
(

12
7

)(
9360
11

· 71

)
+

(−2215
22

· 72

)

9360
11

· 71 =
(−10

7

)(−2215
22

· 72

)
+

(−5
11

· 74

)

−2215
22

· 72 =
(

50
72

)(−5
11

· 74

)
+

(−5
22

· 75

)

−5
11

· 74 =
(

2
7

)(−5
22

· 75

)
+ 0.

The algorithm stops since η5 = 0. The outputs are the sequences

{qi} =
{

2,
12
7

,
−10
7

,
50
72

,
2
7

}

and

{ηi} =
{

9360
11

· 71,
−2215

22
· 72,

−5
11

· 74,
−5
22

· 75

}
.

Lemma 1. Let ηi be the outputs from the p-adic Euclidean Algorithm of σ =
a
b pv(σ) ∈ Q, τ = c

dpv(τ) ∈ Q when a
b and c

d are in lowest terms. Then lcm(b, d) ·
ηi ∈ Z

[
1
p

]
.

Proof. Let l = lcm(b, d). From multiplying through by l in (2),

la

b
pv(σ) =

q1lc

d
pv(τ) + lη1.

Since la
b pv(σ), q1lc

d pv(τ) ∈ Z[
1
p

]
then lη1 ∈ Z

[
1
p

]
.

Then, inductively
lηi−2 = qilηi−1 + lηi

with lηi−2, qilηi−1 ∈ Z
[

1
p

]
. Thus, lηi ∈ Z

[
1
p

]
.

Theorem 2. Let p be an odd prime and σ, τ ∈ Q with τ 6= 0. Then the p-adic
Euclidean Algorithm applied to σ and τ has a finite number of steps.

Proof. For all i such that qi, ηi 6= 0, write ηi = hip
εi and qi = cip

δi where
εi = v(ηi), δi = v(qi), and |hi|p = |ci|p = 1. Then we have the following.

(i.) By Theorem 1 and the note afterwards, v(qi) = v(ηi−2) − v(ηi−1). Thus
δi = εi−2 − εi−1.

(ii.) Also, εi ≥ εi−1 + 1 which implies εi > εi−2, and
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(iii.) |ci|∞ < p1−δi

2 since |cip
δi |∞ < p

2 .

Then by (3), hi = pεi−2−εi(hi−2− cihi−1), where hi, ci ∈ Q ⊆ Qp, and therefore

|hi|∞ ≤ pεi−2−εi(|hi−2|∞ + |ci|∞|hi−1|∞) by the Triangle Inequality

< pεi−2−εi(|hi−2|∞ + 1
2p1−δi |hi−1|∞) by (iii.)

= pεi−2−εi(|hi−2|∞ + 1
2p1+εi−1−εi−2 |hi−1|∞) by (i.)

= pεi−2−εi |hi−2|∞ + 1
2p1−εi+εi−1 |hi−1|∞

< 1
2 |hi−2|∞ + 1

2 |hi−1|∞ by (ii.).

Thus, |hi|∞ < 1
2 |hi−2|∞ + 1

2 |hi−1|∞. Now consider the sequence {|hi−1|∞ +
2|hi|∞} ≥ 1 of positive rational numbers. From the previous inequality,

|hi−1|∞ + 2|hi|∞ < |hi−2|∞ + 2|hi−1|∞.

Therefore, |hi−1|∞ + 2|hi|∞ is decreasing. If σ = a
b pv(σ) and τ = c

dpv(τ), and
l = lcm(b, d), then, by the Lemma 2.1, l|hi|∞ + 2l|hi−1|∞ ∈ Z. Therefore,
l|hi|∞+2l|hi−1|∞ = 0 for some finite i and thus the p-adic Euclidean Algorithm
has a finite number of steps for rational inputs.

4 Applications of the p-adic Euclidean Algorithm

4.1 Greatest Common Divisor

Recall the following definition.

Definition 3. Let a, b ∈ Z, not both zero. Then the greatest common divisor,
or gcd, of a and b is the unique positive integer g = gcd(a, b) that satisfies the
following properties.

(i.) a
g , b

g ∈ Z, and

(ii.) if there exists f ∈ Z with a
f , b

f ∈ Z, then g
f ∈ Z.

We can extend the definition of the gcd to t, s ∈ Q, where t = a
b and s = c

d are
in lowest terms, by setting

gcd(t, s) =
gcd(a, c)
lcm(b, d)

.

This satisfies the properties that if g = gcd(t, s) then t
g , s

g ∈ Z and if there exists
f ∈ Q with t

g , s
g ∈ Z, then g

f ∈ Z.
Recall that the classical Euclidean Algorithm applied to integers a and b

computes gcd(a, b) as the last non-zero remainder. The p-adic Euclidean Algo-
rithm produces a similar computation.
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Theorem 3. Let nonzero σ, τ ∈ Q ⊆ Qp, with σ = spv(σ), τ = tpv(τ). Suppose
the p-adic Euclidean Algorithm applied to σ and τ stops after k steps and let
ηi = hip

v(ηi). Then |hk−1|∞ = gcd(t, s).

Proof. Since ηk−2 = qkηk−1 then nk−2
ηk−1

= qk ∈ Z
[

1
p

]
and thus, hk−2

hk−1
∈ Z. Then,

proceeding inductively backwards through the p-adic Euclidean Algorithm,

ηk−2−i

ηk−1
= qk−i

ηk−1−i

ηk−1
+

ηk−i

ηk−1
∈ Z

[
1
p

]
.

Hence,
s

hk−1
=

h−1

hk−1
∈ Z and

t

hk−1
=

h0

hk−1
∈ Z.

Now suppose f ∈ Q such that t
f , s

f ∈ Z. Note that v(f) ≤ 0, since v(s) =
v(t) = 0, then

h1p
v(η1)

f
=

t

f
pv(τ) − q1

s

f
pv(σ) ∈ Z[1

p

]
.

Thus, h1
f ∈ Z. Then again, inductively hk−1

f ∈ Z.

Our previous example of the p-adic Euclidean Algorithm shows that

5
22

=
(

181625
11

,
10555

2

)
.

Although this computation may seem trivial when the rational numbers are
presented as fractions, all calculations in the p-adic Euclidean algorithm are
amenable to elements of Qp expressed as in (1).

4.2 Simple Continued Fractions

In addition to the gcd, the classical Euclidean Algorithm also computes the
simple continued fraction form of a

b :

a

b
= q1 +

1

q2 +
1

q3 +
1
. . .

= [q1, q2, q3, . . .]

where qi ∈ Z are the quotients obtained during the Euclidean algorithm. In
[1] Browkin defined a simple continued fraction form of a p-adic number, ζ, as
follows:

ζ = b1 +
1

b2 +
1

b3 +
1
. . .

= [b1, b2, b3, . . .]

where bi ∈ Q with |bi|∞ < p
2 . The following summarizes Browkin’s method.
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For ζ with v(ζ) = m as in (1) define

π(ζ) =
{

0 if m > 0∑0
j=m cjp

j otherwise.

Theorem 4 (Browkin). Let ζ ∈ Qp\{0}, and let ζ1 = ζ. For i ≥ 1, let bi =
π(ζi), ζi+1 = (ζi − bi)−1 until ζi − bi = 0, then ζ = [b1, b2, b3, . . .].

The following theorem relates Browkin’s method to the p-adic Euclidean Algo-
rithm. In fact, our proof of Theorem 2 was strongly motivated by the stopping
theorem in [1].

Theorem 5. Let ζ ∈ Qp\{0}, and let {qi} be the outputs of the p-adic Euclidean
Algorithm applied to ζ and 1. Then ζ = [q1, q2, q3, . . .].

Proof. It suffices to show qi = bi. However, we will also prove that ζi = ηi−2
ηi−1

.

We proceed by induction. In the base case,

ζ1 = ζ =
ζ

1
=

η−1

η0
.

Now, let ζ be as in (1), then

|b1|∞ =

∣∣∣∣∣∣

0∑

j=m

cjp
j

∣∣∣∣∣∣
∞

≤
0∑

j=m

|cj |pj ≤
0∑

j=m

(
p− 1

2

)
pj

=
(

p− 1
2

) 0∑

j=m

pj =
p− 1

2
· p− pm

p− 1
<

p

2
.

Also,
|ζ − b1|p = |ζ1 − π(ζ1)|p < 1 = |1|p.

Then since ζ = b1 ·1+(ζ−b1), by the uniqueness of the p-adic division algorithm,
b1 = q1.

In the inductive case, assume qi = bi and ζi = ηi−2
ηi−1

. Then,

(ζi+1)−1 = ζi − bi =
ηi−2

ηi−1
− qi =

ηi−2 − qiηi−1

ηi−1
=

ηi

ηi−1
.

Thus, ζi+1 = ηi−1
ni

.
Now consider

ηi−1 = bi+1ηi + (ηi−1 − bi+1ηi).

Using the same logic from the base case, |bi+1| < p
2 , and

|ηi−1 − bi+1ηi|p = |ηi|p|ζi+1 − bi+1|p < |ηi|p.

Thus, by the uniqueness of the p-adic division algorithm bi+1 = qi+1. Therefore,
qi = bi, and by Theorem 4, ζ = [q1, q2, q3, . . .].
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Using the theorem in our previous example computes that

181625
11

10555
2

= 2 +
1

12
7

+
1

−10
7

+
1

50
72

+
1
2
7

.

Even though the p-adic Euclidean Algorithm and Browkin’s method produce
the same results, the p-adic Euclidean Algorithm is computationally quicker
since performing the p-adic division algorithm only requires an inversion modulo
a prime power. Further Theorem 5 tells us exactly under what conditions the
p-adic Euclidean Algorithm terminates.

Corollary. For σ, τ ∈ Qp, τ 6= 0, the p-adic Euclidean Algorithm terminates in
a finite number of steps if and only if σ/τ ∈ Q.

5 Open Questions

The following questions concerning the techniques discussed in this paper remain
open to the authors.

• How does the sequence {ηi} from the computation (σ, τ) relate to the
sequence {η′i} from computing (τ, σ)? Examples quickly show that they
are not always related in the simple way the remainders are in the classical
case.

• Do we have to use the modular representatives
{

1−p
2 . . . p−1

2

}
or would

another set of representatives also work? Again, small examples will show
that if we choose {0, . . . , p − 1} as the set of representatives, the p-adic
Euclidean Algorithm applied to two rational numbers may not terminate.
In a more general setting, do the representatives depend on the choice of
uniformizer for the local field?

• In the classical setting the division algorithm leads to modular arithmetic.
Is there a similar theory to come from the p-adic division algorithm?

• Lastly, as is always the case, an analagous theory remains to be worked
out in the 2-adics.
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