One way to understand $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

Le Tang

Winona State University
February 6, 2016

About e

$e=2.718281828 \cdots$ is a mathematical constant called Euler's number after the Swiss mathematician Leonhard Euler.

Definitions of e

Most commonly, we define e as

Definition

$e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$

Definitions of e

Most commonly, we define e as

Definition

$$
e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Definition

$$
e \equiv \sum_{n=0}^{\infty} \frac{1}{n!}
$$

Visualization

Take a look at the following graph

Question

Why is e defined as $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$, not anything else?

Recall

Let's first recall the definition of the derivative:

Definition

The derivative of $f(x)$ with respect to x is the function $f^{\prime}(x)$ and is defined as,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Ideas

Consider the derivative of every exponential function of the form $f(x)=a^{x}(a>0)$.

Ideas

Consider the derivative of every exponential function of the form $f(x)=a^{x}(a>0)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =a^{x}\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right)
\end{aligned}
$$

Ideas

Consider the derivative of every exponential function of the form $f(x)=a^{x}(a>0)$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =a^{x}\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right)
\end{aligned}
$$

Notice here that the derivative of $f(x)$ is equal to a multiple of itself.

Computation

- To obtain a numerical value of a, we let $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$.

Computation

- To obtain a numerical value of a, we let $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$.
- So for small values of h, we can write:

$$
a^{h}-1 \approx h
$$

Computation

- To obtain a numerical value of a, we let $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$.
- So for small values of h, we can write:

$$
a^{h}-1 \approx h \Longrightarrow a^{h} \approx 1+h
$$

Computation

- To obtain a numerical value of a, we let $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$.
- So for small values of h, we can write:

$$
a^{h}-1 \approx h \Longrightarrow a^{h} \approx 1+h \Longrightarrow a \approx(1+h)^{\frac{1}{h}}
$$

We are almost there

If we replace h by $\frac{1}{n}$, then

$$
a \approx\left(1+\frac{1}{n}\right)^{n} .
$$

Finally

The approximation gets better as n gets larger, then

$$
a=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

so that $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$

Finally

The approximation gets better as n gets larger, then

$$
a=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

so that $\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$ (proportional constant).

Recall

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =a^{x}\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right)
\end{aligned}
$$

Recall

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =a^{x}\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right)
\end{aligned}
$$

Thus,

$$
a=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \Longrightarrow f^{\prime}(x)=a^{x} \cdot 1=a^{x}
$$

Why not give a new name since it is a constant? Call it e!

$$
e \equiv \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Thanks for listening!

Questions?

