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About e

e = 2.718281828 · · · is a mathematical constant called Euler’s
number after the Swiss mathematician Leonhard Euler.
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Definitions of e

Most commonly, we define e as

Definition

e ≡ lim
n→∞

(1 +
1

n
)n

Definition

e ≡
∞∑
n=0

1

n!
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Visualization

Take a look at the following graph
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Question

Why is e defined as lim
n→∞

(1 +
1

n
)n, not anything else?
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Recall

Let’s first recall the definition of the derivative:

Definition

The derivative of f (x) with respect to x is the function f ′(x) and
is defined as,

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.
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Ideas

Consider the derivative of every exponential function of the form
f (x) = ax (a > 0).

f ′(x) = lim
h→0

ax+h − ax

h

= lim
h→0

ax · ah − ax

h

= ax
(

lim
h→0

ah − 1

h

)

Notice here that the derivative of f (x) is equal to a multiple of
itself.
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Computation

To obtain a numerical value of a, we let lim
h→0

ah − 1

h
= 1.

So for small values of h, we can write:

ah − 1 ≈ h

=⇒ ah ≈ 1 + h =⇒ a ≈ (1 + h)
1
h

.
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We are almost there

If we replace h by
1

n
, then

a ≈ (1 +
1

n
)n.
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Finally

The approximation gets better as n gets larger, then

a = lim
n→∞

(
1 +

1

n

)n
so that lim

h→0

ah − 1

h
= 1

(proportional constant).
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Recall

f ′(x) = lim
h→0

ax+h − ax

h
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h→0

ax · ah − ax

h

= ax
(

lim
h→0

ah − 1

h

)

Thus,

a = lim
n→∞

(
1 +

1

n

)n
=⇒ f ′(x) = ax · 1 = ax .
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e

Why not give a a new name since it is a constant? Call it e!

e ≡ lim
n→∞

(
1 +

1

n

)n
.
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Thanks for listening!

Questions?
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