Intro	Main Ideas	Advanced Moves	Conclusion

One way to understand $\lim_{n \to \infty} (1 + \frac{1}{n})^n$

Le Tang

Winona State University

February 6, 2016

< ≣⇒

Intro ●○	Main Ideas	Advanced Moves	Conclusion
About e			

$e = 2.718281828 \cdots$ is a mathematical constant called **Euler's** number after the Swiss mathematician Leonhard Euler.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Intro ⊙●	Main Ideas	Advanced Moves	Conclusion
Definitions o	of e		

Most commonly, we define e as

Definition

$$e \equiv \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Intro ○●	Main Ideas	Advanced Moves	Conclusion
Definitions of	fe		

Most commonly, we define e as

Definition

$$e \equiv \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Definition

$$e\equiv\sum_{n=0}^{\infty}\frac{1}{n!}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro	Main Ideas	Advanced Moves	Conclusion
	0000		

Visualization

Take a look at the following graph

<= ≣⇒

Intro 00	Main Ideas ○●○○	Advanced Moves	Conclusion
Question			

Why is e defined as
$$\lim_{n\to\infty}(1+\frac{1}{n})^n$$
, not anything else?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへぐ

Intro 00	Main Ideas ○○●○	Advanced Moves	Conclusion
Recall			

Let's first recall the definition of the derivative:

Definition

The **derivative** of f(x) with respect to x is the function f'(x) and is defined as,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

★ 문 ▶ 문

Intro 00	Main Ideas ○○○●	Advanced Moves	Conclusion
Ideas			
lueas			

Consider the derivative of every exponential function of the form $f(x) = a^x$ (a > 0).

→ 御 → → 注 → → 注 注

Intro 00	Main Ideas ○○○●	Advanced Moves	Conclusion
Ideas			

Consider the derivative of every exponential function of the form $f(x) = a^x$ (a > 0).

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x \cdot a^h - a^x}{h}$$
$$= a^x \left(\lim_{h \to 0} \frac{a^h - 1}{h}\right)$$

(本部) (本語) (本語) (語)

Intro 00	Main Ideas ○○○●	Advanced Moves	Conclusion
Ideas			

Consider the derivative of every exponential function of the form $f(x) = a^x$ (a > 0).

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x \cdot a^h - a^x}{h}$$
$$= a^x \left(\lim_{h \to 0} \frac{a^h - 1}{h}\right)$$

Notice here that the derivative of f(x) is equal to a multiple of itself.

副 🖌 🗶 🖻 🕨 🖉 👘

3

Intro 00	Main Ideas	Advanced Moves ●○○○	Conclusion
Computation			

• To obtain a numerical value of *a*, we let $\lim_{h \to 0} \frac{a^h - 1}{h} = 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro	Main Ideas	Advanced Moves	Conclusion
		0000	

Computation

- To obtain a numerical value of a, we let $\lim_{h \to 0} \frac{a^h 1}{h} = 1$.
- So for small values of *h*, we can write:

$$a^h - 1 \approx h$$

٠

(4回) (4回) (日)

Intro	Main Ideas	Advanced Moves	Conclusion
		0000	

Computation

- To obtain a numerical value of a, we let $\lim_{h \to 0} \frac{a^h 1}{h} = 1$.
- So for small values of *h*, we can write:

$$a^h - 1 pprox h \implies a^h pprox 1 + h$$

٠

個 と く ヨ と く ヨ と …

Intro	Main Ideas	Advanced Moves	Conclusion
		0000	

Computation

- To obtain a numerical value of *a*, we let $\lim_{h\to 0} \frac{a^h 1}{h} = 1$.
- So for small values of *h*, we can write:

$$a^h-1pprox h\implies a^hpprox 1+h\implies approx (1+h)^{rac{1}{h}}.$$

回 と く ヨ と く ヨ と

Intro 00	Main Ideas	Advanced Moves ○●○○	Conclusion

We are almost there

If we replace
$$h$$
 by $\frac{1}{n}$, then $a pprox (1+\frac{1}{n})^n.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Intro 00	Main Ideas	Advanced Moves ○○●○	Conclusion
Finally			

The approximation gets better as n gets larger, then

$$a = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

so that
$$\lim_{h \to 0} \frac{a^h - 1}{h} = 1$$

Intro 00	Main Ideas	Advanced Moves ○○●○	Conclusion
Finally			

The approximation gets better as n gets larger, then

$$a = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

so that
$$\lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
 (proportional constant).

・ 同・ ・ ヨ・

Intro 00	Main Ideas	Advanced Moves ○○○●	Conclusion
Recall			

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x \cdot a^h - a^x}{h}$$
$$= a^x \left(\lim_{h \to 0} \frac{a^h - 1}{h}\right)$$

・ロト・(四)・(日)・(日)・(日)・

Intro 00	Main Ideas	Advanced Moves	Conclusion
Recall			

$$f'(x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x \cdot a^h - a^x}{h}$$
$$= a^x \left(\lim_{h \to 0} \frac{a^h - 1}{h}\right)$$

Thus,

$$a = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \implies f'(x) = a^x \cdot 1 = a^x.$$

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

Intro	Main Ideas	Advanced Moves	Conclusion
			•0

е

Why not give a a new name since it is a constant? Call it e!

$$e\equiv\lim_{n\to\infty}\left(1+rac{1}{n}
ight)^n.$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

Intro 00	Main Ideas	Advanced Moves	Conclusion ○●
Thanks fo	sr lictoning		

Thanks for listening!

Questions?

Le Tang One way to understand $\lim_{n\to\infty} (1+\frac{1}{n})^n$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで