Math 447: Elliptic Curves Homework.
\#1. (i) Prove that any elliptic curve given by $E_{K}: y^{2}=x^{3}+a x^{2}+b x+c$ can be transformed into the form $y^{2}=x^{\prime 3}+b^{\prime} x^{\prime}+c^{\prime}$ through a translation $x^{\prime}=x+t$ for some $t \in K$.
(ii) Prove that this does not affect the group structure of the curve, i.e. that the group for the new curve is isomorphic to the original one?
(iii) Does such a $t$ always exist in the field $K$ ?
\#2. Find the third intersection point of the line through $(1,0)$ and $(9,20)$ on the curve $E_{\mathbb{R}}: y^{2}=x^{3}-4 x^{2}-x+4$.
$\# 3$. Find all points of order 2 on the following curves

- $E_{\mathbb{R}}: y^{2}=x^{3}-9 x^{2}+16 x-4$
- $E_{\mathbb{R}}: y^{2}=x^{3}+x^{2}+6 x$
- $E_{\mathbb{Q}}: y^{2}=x^{3}-8 x^{2}+17 x-10$
- $E_{\mathbb{Q}}: y^{2}=x^{3}+x^{2}-5 x$
\#4. Let $S$ be a set with a binary operation $*$ satisfying the following two rules:
(a) $P * Q=Q * P$ for all $P, Q \in S$
(b) $P *(P * Q)=Q$ for all $P, Q \in S$

Fix an element $\mathcal{O} \in S$, and define the binary operation + by the rule

$$
P+Q=\mathcal{O} *(P * Q)
$$

(i) Prove that + is commutative and has $\mathcal{O}$ as identity.
(ii) Show that $X=P *(Q * \mathcal{O})$ is a solution to $X+P=Q$.
(iii) Express $-P$ (the inverse of $P$ under + ) in terms of $*$.
\#5. Use induction to show

$$
1^{2}+2^{2}+3^{2}+\ldots+x^{2}=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6}
$$

(Hint: $\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6}=\frac{x(x+1)(2 x+1)}{6}$ )
$\# 6$. Verify that $(0,0)+2(1,1)=(24,-70)$ on the elliptic curve $E_{\mathbb{Q}}: y^{2}=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6}$.
\#7. If $a^{2}+b^{2}=c^{2}$ and $n=\frac{a b}{2}$. Verify that

$$
y^{2}=x^{3}-n^{2} x
$$

where $y=\frac{\left(b^{2}-a^{2}\right) c}{8}$ and $x=\frac{c^{2}}{4}$.
\#8. Double the point $(-3,36)$ on $E_{\mathbb{Q}}: y^{2}=x^{3}-441 x$ to find an $a, b$, and $c$ that show 21 is a congruent number.

