Math 447: Elliptic Curves Homework.

#1. (i) Prove that any elliptic curve given by $E_K : y^2 = x^3 + ax^2 + bx + c$ can be transformed into the form $y^2 = x'^3 + b'x' + c'$ through a translation x' = x + t for some $t \in K$. (ii) Prove that this does not affect the group structure of the curve, i.e. that the group for the new curve is isomorphic to the original one? (iii) Does such a t always exist in the field K?

#2. Find the third intersection point of the line through (1,0) and (9,20) on the curve $E_{\mathbb{R}}: y^2 = x^3 - 4x^2 - x + 4$.

#3. Find all points of order 2 on the following curves

- $E_{\mathbb{R}}: y^2 = x^3 9x^2 + 16x 4$
- $E_{\mathbb{R}}: y^2 = x^3 + x^2 + 6x$
- $E_{\mathbb{Q}}: y^2 = x^3 8x^2 + 17x 10$

•
$$E_{\mathbb{Q}}: y^2 = x^3 + x^2 - 5x$$

#4. Let S be a set with a binary operation * satisfying the following two rules: (a) P * Q = Q * P for all $P, Q \in S$

(b) P * (P * Q) = Q for all $P, Q \in S$

Fix an element $\mathcal{O} \in S$, and define the binary operation + by the rule

$$P + Q = \mathcal{O} * (P * Q)$$

- (i) Prove that + is commutative and has \mathcal{O} as identity.
- (ii) Show that $X = P * (Q * \mathcal{O})$ is a solution to X + P = Q.
- (iii) Express -P (the inverse of P under +) in terms of *.

#5. Use induction to show

$$1^{2} + 2^{2} + 3^{2} + \dots + x^{2} = \frac{x^{3}}{3} + \frac{x^{2}}{2} + \frac{x}{6}$$

(*Hint:* $\frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{6} = \frac{x(x+1)(2x+1)}{6}$)

#6. Verify that (0,0) + 2(1,1) = (24,-70) on the elliptic curve $E_{\mathbb{Q}}: y^2 = \frac{x^3}{3} + \frac{x^2}{2} + \frac{x}{6}$.

#7. If $a^2 + b^2 = c^2$ and $n = \frac{ab}{2}$. Verify that

$$y^2 = x^3 - n^2 x$$

where $y = \frac{(b^2 - a^2)c}{8}$ and $x = \frac{c^2}{4}$.

#8. Double the point (-3, 36) on $E_{\mathbb{Q}}: y^2 = x^3 - 441x$ to find an a, b, and c that show 21 is a congruent number.