Chapter 1

Introduction: Matter and Measurement

Steps in the Scientific Method

1. Observations
quantitative
qualitative
2. Formulating hypotheses
possible explanation for the observation
3. Performing experiments
gathering new information to decide whether the hypothesis is valid

Outcomes Over the Long-Term

Theory (Model)

- A set of tested hypotheses that give an overall explanation of some natural phenomenon.
Natural Law
- The same observation applies to many different systems
Example - Law of Conservation of Mass

Which statement explains the

difference between a scientific law
(X) and a scientific theory (Y) ?
a. X is proven; Y is not proven.
b. X is not proven; Y is proven.
c. X tells what happens; Y explains why things happen.
d. X explains why things happen;
Y tells what happens.

Which statement explains the difference between a scientific law (X) and a scientific theory (Y) ?
a. X is proven; Y is not proven.
b. X is not proven; Y is proven.
c. X tells what happens; Y explains why things happen.
d. X explains why things happen; Y tells what happens.

Law v. Theory

A law summarizes what happens; a theory (model) is an attempt to explain why it happens.

Nature of Measurement

Measurement - quantitative observation consisting of 2 parts

Part 1 - number

$$
\text { Part } 2 \text { - scale (unit) }
$$

Examples:

$$
\begin{gathered}
20 \text { grams } \\
6.63 \times 10^{-34} \text { Joule seconds }
\end{gathered}
$$

International System (le Système International)

Based on metric system and units derived from metric system.

September 8, 2017

Uncertainty in Measurement

A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Precision and Accuracy

Accuracy refers to the agreement of a particular value with the true value.

Precision refers to the degree of agreement among several elements of the same quantity.

September 8, 2017

In three trials, a student measures a sample's mass to be to be $0.100 \mathrm{~g}, 0.600 \mathrm{~g}$, and 0.300 g . The accepted value is 0.340 g . The student's data have
a. good accuracy and good precision
b. good accuracy, but poor precision.
c. poor accuracy, but good precision.
d. poor accuracy and poor precision.

Types of Error

Random Error (Indeterminate Error) measurement has an equal probability of being high or low.

Systematic Error (Determinate Error) Occurs in the same direction each time (high or low), often resulting from poor technique.

In three trials, a student measures
a sample's mass to be to be
$0.100 \mathrm{~g}, 0.600 \mathrm{~g}$, and 0.300 g . The accepted value is 0.340 g . The student's data have
a. good accuracy and good precision.
b. good accuracy, but poor precision.
c. poor accuracy, but good precision.
d. poor accuracy and poor precision.

Rules for Counting Significant Figures - Overview

1. Nonzero integers
2. Zeros

- leading zeros
captive zeros
trailing zeros

3. Exact numbers

Rules for Counting Significant
Figures - Details

Zeros
Leading zeros do not count as significant figures.
0.0486 has

3 sig figs.

Rules for Counting Significant

Figures - Details

Zeros

Trailing zeros are significant only if the number contains a decimal point.
9.300 has

4 sig figs.

Rules for Counting Significant

 Figures - DetailsNonzero integers always count as significant figures.

$$
\begin{aligned}
& 3456 \text { has } \\
& 4 \text { sig figs. }
\end{aligned}
$$

Rules for Counting Significant Figures - Details

Zeros
Captive zeros always count as significant figures.

$$
\begin{aligned}
& \text { 16.07 has } \\
& 4 \text { sig figs. }
\end{aligned}
$$

Rules for Counting Significant Figures - Details

Exact numbers have an infinite number of significant figures.

$$
1 \text { inch }=2.54 \mathrm{~cm}, \text { exactly }
$$

The measured quantity 0.0860 g contains \qquad significant figures.
a. three
b. four
c. five
d. six

```
1.52 Underline the significant zeros in the following numbers: 
(a) 0.41; (b) 0.041; (c) 0.0410; (d) 4.0100\times104.
1.53 Underline the significant zeros in the following numbers:
(a) 5.08 ; (b) 508 ; (c) \(5.080 \times 10^{3}\); (d) 0.05080 .
```

The measured quantity 0.0860 g contains \qquad significant figures.
a. three
b. four
c. five
d. six

Round off each number to the indicated number of significant figures (sf): (a) 231.554 (to 4 sf ; ; (b) 0.00845 (to 2 sf); (c) 144,000 (to 2 sf).
a.) 231.554
231.6
b. 0.00845
0.0085 8.5×10^{-3}

Rules for Significant Figures in Mathematical Operations

Multiplication and Division: \# sig figs in the result equals the number in the least precise measurement used in the calculation.

$$
\begin{gathered}
6.38 \times 2.0= \\
12.76 \rightarrow 13(2 \text { sig figs })
\end{gathered}
$$

Rules for Significant Figures in Mathematical Operations

Addition and Subtraction: \# decimal places in the result equals the number of decimal places in the least precise measurement.

$$
\begin{gathered}
6.8+11.934= \\
18.734 \rightarrow 18.7(3 \text { sig figs })
\end{gathered}
$$

$4.1 \mathrm{~g}+7.08 \mathrm{~g}=\ldots \mathrm{g}$
4.1
a. 11.180
b. 11.18
c. 11.2
d. 11

$4.1 \mathrm{~g}+7.08 \mathrm{~g}=\quad \mathrm{g}$

a. 11.180
b. 11.18
c. 11.2
d. 11

a. 1.830
b. 1.83
c. 1.8
d. 1
$5.2 \mathrm{~cm} \times 7.01 \mathrm{~cm}=$ \qquad cm^{2}
$5.2 \mathrm{~cm} \times 7.01 \mathrm{~cm}=$ \qquad cm^{2}
a. 36
b. 36.4
c. 36.45
d. 36.452
a. 36
b. 36.4
c. 36.45
d. 36.452

$6.03 \mathrm{~g} \div 7.1 \mathrm{~mL}=$
 \qquad g / mL

a. 0.8
b. $\mathbf{0 . 8 5}$
c. 0.849
d. 0.849257
1.58 Carry out the following calculations, making sure that your answer has the correct number of significant figures: AA:
(a) $\frac{2.795 \mathrm{~m} \times 3.10 \mathrm{~m}}{6.48 \mathrm{~m}}$
(b) $V=\frac{4}{3} \pi r^{3}$, where $r=17.282 \mathrm{~mm}$
(c) $1.110 \mathrm{~cm}+17.3 \mathrm{~cm}+108.2 \mathrm{~cm}+316 \mathrm{~cm}$
a. $1.337114 \rightarrow 1.34 \mathrm{~m}$
b. $\quad V=\frac{4}{3} \times \pi \times(17.282)^{3}=$
21620.74286 $21601 \mathrm{~mm}^{3}$
c. $=442.610 \rightarrow 443 \mathrm{~cm}$

Dimensional Analysis

Proper use of "unit factors" leads to proper units in your answer.

$$
\begin{gathered}
1 \mathrm{in}=2.54 \mathrm{~cm} \\
1 \text { pound }=453.59 \mathrm{~g} \\
1 \text { gallon }=3.7854 \mathrm{~L}
\end{gathered}
$$

September 8, 2017

$$
\begin{array}{r}
1.28 \text { What is the elenght in inches (in) of a } 100 \text {-m socece field? 困 } \\
2.54 \mathrm{~cm}=1 \mathrm{in} \\
100 . \mathrm{m} \times \frac{100 \mathrm{~cm}}{1 \sim} \times \frac{1 \mathrm{in}}{2.54 \mathrm{cn}} \div 3940 \mathrm{in} \\
3.94 \times 10^{3} \mathrm{in}
\end{array}
$$

$$
\begin{aligned}
& \text {.34 The average density of Earth is } 5.52 \mathrm{~g} / \mathrm{cm}^{3} \text {. What is its density in }(\mathrm{a}) \mathrm{kg} / \mathrm{m}^{3} \text {; (b) } \mathrm{lb} / \mathrm{f} \mathrm{f}^{3} \text { ? (A) } \\
& 2.5^{\circ} 4 \mathrm{~cm}=1 \mathrm{in} \\
& 1 \mathrm{~kg}=2.205 \mathrm{lb} \\
& \text { 1 } \\
& \text { a.) } \frac{5.52 z}{\mathrm{~cm}^{3}} \times \frac{1 k_{s}}{1000_{g}} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3} \\
& \begin{array}{r}
\frac{5.528}{4 m^{2}} \times \frac{1 \mathrm{ks}_{s}}{1000_{g}} \times \frac{(100)^{3} \mathrm{cms}^{8}}{1^{3} \mathrm{~m}^{3}} \begin{array}{c}
=\frac{\mathrm{ks}}{\mathrm{~m}^{2}} \\
5520 \mathrm{ks} / \mathrm{mo}^{3}
\end{array}
\end{array} \\
& \text { b. } \frac{5.525}{c r^{3}} \times\left(\frac{2.5 \psi_{c \mu}}{1 i \gamma}\right)^{3} \times\left(\frac{12 i n}{1 t t}\right)^{3} \rightarrow \frac{13}{t t^{3}} \\
& \times \frac{1 k 5}{10008} \times \frac{2.20513}{1 k 5}=\frac{156}{345} \quad \frac{13}{6 t^{3}}
\end{aligned}
$$

Temperature

Celsius scale $={ }^{\circ} \mathrm{C}$
Kelvin scale $=\mathrm{K}$
Fahrenheit scale $={ }^{\circ} \mathrm{F}$

Is the following statement true or false? The "size" of a degree on the Celsius scale is the same as the "size" of a degree on the Kēvin scale.
a. True
b. False

Is the following statement true or false? The "size" of a degree on the Celsius scale is the same as the "size" of a degree on the Kevin scale.
a. True
b. False

Temperature

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}}+273.15 \\
& \mathrm{~T}_{\mathrm{F}}=\mathrm{T}_{\mathrm{C}} \times \frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}
\end{aligned}
$$

Density

Density is the mass of substance per unit volume of the substance:

$$
\text { density }=\frac{\text { mass }}{\text { volume }}
$$

$$
D=\frac{m}{V}
$$

An empty vial weighs 55.32 g . (a) If the vial weighs 185.56 g when filled with liquid mercury $\left(d=13.53 \mathrm{~g} / \mathrm{cm}^{3}\right)$, what volume of mercury is in the vial? (b) How much would the vial weigh if it were filled with the same volume of water $a=-0, y)$ gem masc

$$
\begin{aligned}
& \text { a.) } d=\frac{m}{v} \quad V=\frac{m}{c} \\
& m_{\text {sob. }}=185.56,-55.32_{s}=130.24 \text {, } \\
& \begin{array}{r}
V=\frac{130.248}{13.53 \frac{8}{c \omega^{3}}}=9.626 \mathrm{~cm}^{3} \\
1 \mathrm{~cm}^{3}=1 \mathrm{ml}
\end{array} \\
& \text { b. } m_{N}=d_{N} v_{N}= \\
& m_{V}=m_{N}+m_{E V}=64.92 \text {, }
\end{aligned}
$$

Table 01.06	
TABLE 1.6 - De	Substances at 25
Substance	Density ($\mathrm{g} / \mathrm{cm}^{3}$)
Air	0.001
Balsa wood	0.16
Ethanol	0.79
Water	1.00
Ethylene glycol	1.09
Table sugar	1.59
Table salt	2.16
Iron	7.9
Gold	19.32
Copyright © 2009 Pearson Prentice Hall, Inc.	

