Chemistry 212-213 Reveiw Stoichiometry

I) How many grams of hydrogen are in 46 g of CH ₄ O?						
A) 2.8	B) 184	C) 0.36	D) 1.5	E) 5.8		
2) How many moles of carbon dioxide are there in 52.06 g of carbon dioxide?						
A) 8.648 × 10 ²³	}					
B) 0.8452						
C) 3.134×10^{25})					
D) 1.183						
E) 6.022 × 10 ²³	;					
3) There are	molecules of me	ethane in 0.123 mol of	methane (CH4).		3)	
A) 2.46×10^{-2}						
B) 7.40 × 10 ²²						
C) 5						
D) 0.615						
E) 2.04 × 10 ⁻²⁵	j					
1) The combustion of	of propane (C ₃ H ₈) ir	the presence of exces	s oxygen yields CO	₂ and H ₂ O:	4)	
C ₃ H ₈ (g)	$+ 5O_2(g) \rightarrow 3CO_2$	₂ (g) + 4H ₂ O (g)				
When 2.5 mol of O ₂ are consumed in their reaction, mol of CO ₂ are produced.						
A) 1.5	B) 2.5	C) 5.0	D) 6.0	E) 3.0		
5) Calcium carbide (CaC ₂) reacts with water to produce acetylene (C ₂ H ₂):						
CaC ₂ (s)	+ 2H ₂ O (g) → Ca($(OH)_2 (s) + C_2H_2 (g)$				
5 1 11 610	g of C ₂ H ₂ requires c	onsumption of	g of H ₂ O.			
Production of 13				E) 4.0 40.2		
A) 9.0	B) 18	C) 4.8 × 10 ²	D) 4.5	E) 4.8 × 10 ⁻²		
A) 9.0	ŕ	C) 4.8×10^2 roduced by the reactio	,	•	6)	
A) 9.0 b) What mass in grawater?	ŕ	roduced by the reactio	,	•	6)	

	7) What is the maximu with 3.0 g of H ₂ via	ū	of NH3 that can be pro w?	oduced by the reac	tion of 1.0 g of N ₂	7)
	N ₂ (g) + H	$_2(g) \rightarrow NH_3(g)$	(not balanced)			
	A) 1.2	B) 2.0	C) 0.61	D) 4.0	E) 17	
SHOR	8) A sulfur oxide is 50. A) S ₂ O B) SO ₂ C) SO D) S ₂ O ₄ E) either SO ₂ or S	S ₂ O ₄				8)
	9) A compound was fo	ound to contain 90	.6% lead (Pb) and 9.4%	oxygen. The emp	irical 9)	
	formula for this con	npound is	.			
MULT	TIPLE CHOICE. Choose	e the one alternati	ve that best completes	s the statement or a	answers the question	
	10) How many grams o CH ₃ OH?	f CH ₃ OH must be	added to water to pre	pare 150 mL of a s	olution that is 2.0 M	10)
	A) 9.6	B) 4.3	C) 9.6×10^3	D) 2.4	E) 4.3×10^2	
	11) The concentration (I diluted to 0.800 L is	<u>.</u>	·		0 M solution was	11)
	A) 0.500	B) 0.400	C) 8.00	D) 0.200	E) 0.800	