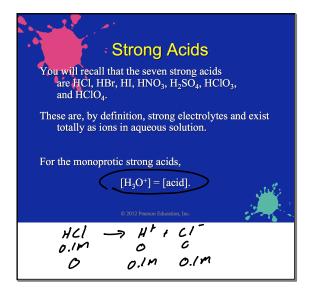
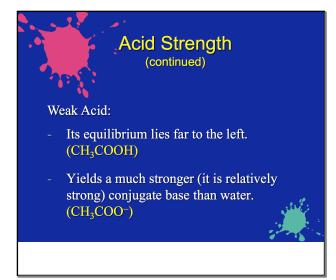
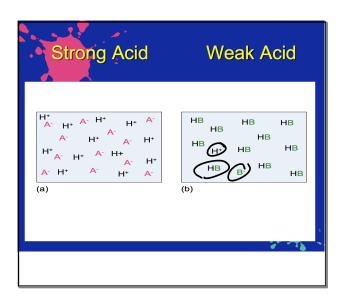
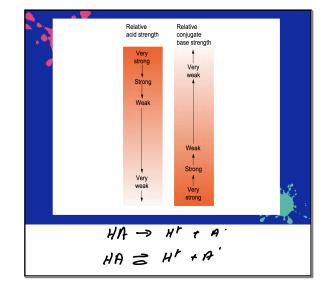
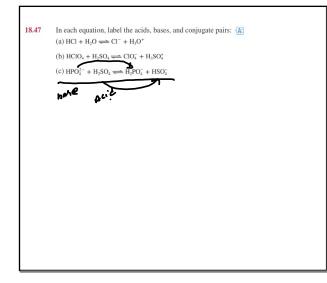

Conjugate Acid/Base Pairs				
$HA(aq) + H_2O(l) \rightarrow H_3O^+(aq) + A^-(aq)$				
conj conj conj conj				
conjugate base: everything that remains of the acid molecule after a proton is lost.				
conjugate acid: formed when the proton is transferred to the base.				
HA + HO 2 Hot A				
$K_{a} = \frac{EH_{a}OBEAB}{EHAB}$				

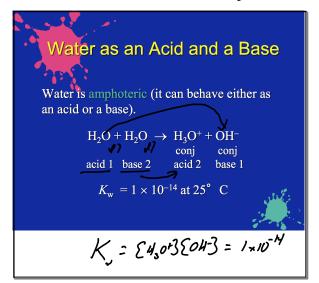


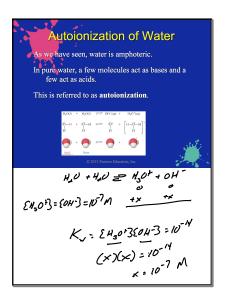


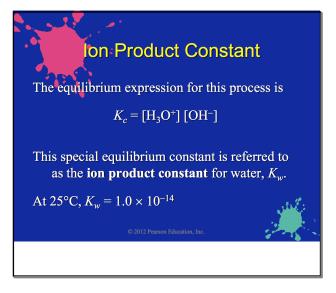




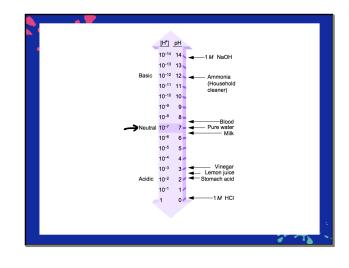


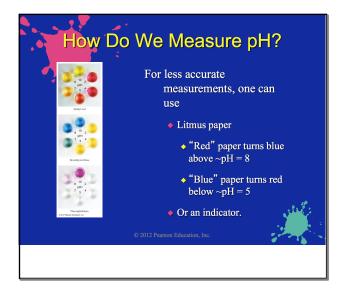


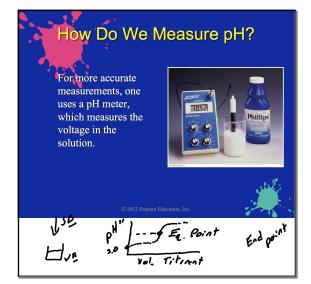


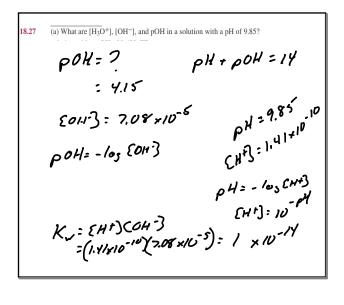

Formula	Name	Value of Ka*	
ISO4	Hydrogen sulfate ion	1.2 x 10 ⁻²	<u>†</u>
ICIO ₂	Chlorous acid	1.2 x 10 ⁻²	
IC ₂ H ₂ CIO ₂	Monochloracetic acid	1.35 x 10⁻³	£
IF	Hydrofluoric acid	7.2 x 10⁻⁴	Increasing acid strength
INO ₂	Nitrous acid	4.0 x 10 ⁻⁴	str
IC ₂ H ₃ O ₂	Acetic acid	1.8 x 10 ⁻⁵	acid
AI(H ₂ O) ₆] ³⁺	Hydrated aluminum(III) ion	1.4 x 10 ^{−5}	þ
IOCI	Hypochlorous acid	3.5 x 10 ⁻⁸	asir
ICN	Hydrocyanic acid	6.2 x 10 ⁻¹⁰	cre
IH₄ ⁺	Ammonium ion	5.6 x 10 ⁻¹⁰	<u> </u>
IOC ₆ H ₅	Phenol	1.6 x 10 ⁻¹⁰	
The units of K _a are	mol/L but are customarily omitted.		

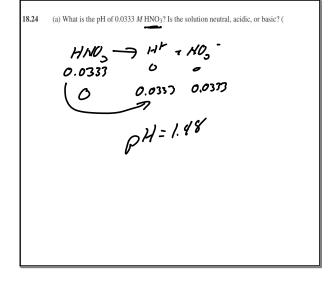
18.43 Give the formula of the conjugate base: 🕼 (a) HCl (b) H₂CO₃ (c) H₂O ł H r **K**1 HCI -> Ht + CI H, CO3 = Ht + HCO5 (H, 10) + HN, = H,0+ + H103 AUC + H,0 = H30+ + (032-HLO5 base p.12

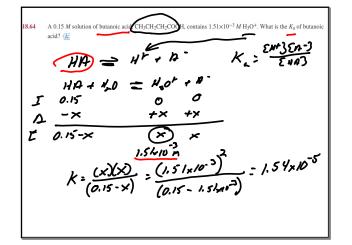




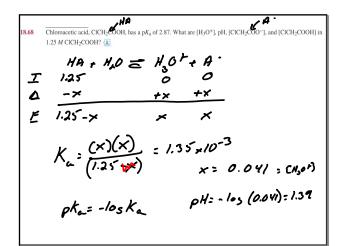


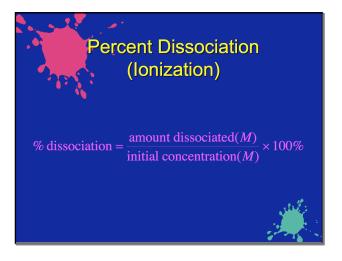


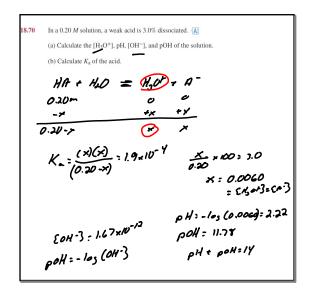


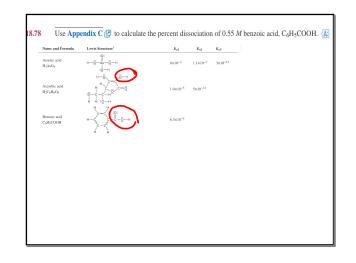


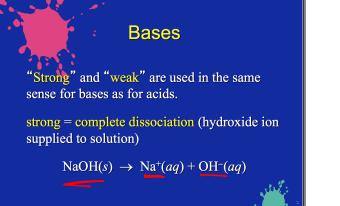
Solving Weak Acid Equilibrium Problems


- List major species in solution.
- Choose species that can produce H⁺ and write reactions.
- Based on K values, decide on dominant equilibrium.
- Write equilibrium expression for dominant equilibrium.
- List initial concentrations in dominant equilibrium.

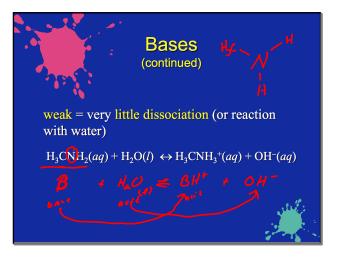

Solving Weak Acid Equilibrium Problems (continued)

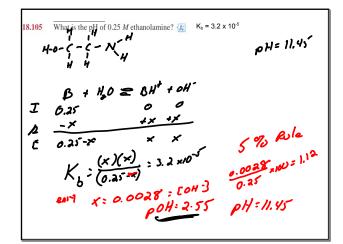

- Define change at equilibrium (as "x").
- Write equilibrium concentrations in terms of *x*.
- Substitute equilibrium concentrations into equilibrium expression.
- Solve for *x* the "easy way."
- Verify assumptions using 5% rule.
- Calculate [H⁺] and pH.



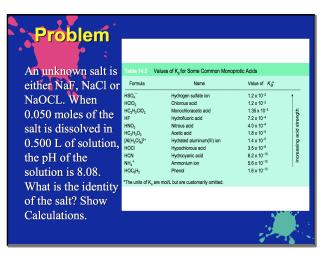

Nitrous acid, HNO₂, has a K_a of 7.1×10⁻⁴. What are [H₃O⁺], [NO₇⁻], and [OH⁻] in 0.60 M HNO₂? (A)







18.23 (a) What is the pH of 0.0111 M NaOH? Is the solution neutral, acidic, or basic? NOOH -> Not + OH CHIBCH]= 10" 0 0 0.0111 0.011 p04= 1,95 0.011 D pH+pOH=14 pH=14-1.95= 12.05 **18.25** (a) What is the pH of $6.14 \times 10^{-3} M$ HI? Is the solution neutral, acidic, or basic (b) What is the pOH of 2.55 MBa(OH)2? Is the solution neutral, acidic, or basic? (A: $\begin{array}{c} \text{Ja(OH)}_{2}\text{ 1s the solution neutral, acidic, or basic?} & & \\ \text{Be}\left(04\right) \xrightarrow{} & \text{Be}^{24} + 2 \text{ OH}^{-} \\ 2.55 \text{ M} & 2.55 \\ & 2.55 \\ \text{OH}^{2} + 105 \\ (2(255)) - 105 \\ \text{OH}^{2} + 105 \\ \text{OH}^{2} + 19.8 \end{array}$


18.99 Write balanced equations and K_b expressions for these Brønsted-Lowry bases in water: (A) (a) Pyridine, C5H5N (b) CO32- $\begin{array}{c} \text{A.} \\ \text{C_{S}} \text{H_{S}} \text{N} + \text{H_{A}} O = \text{C_{S}} \text{H_{S}} \text{NH}^{\dagger} + \text{OH}^{-} \\ \\ \text{AL2} \\ \\ \text{K}_{O} = \frac{\text{C_{S}} \text{H_{S}} \text{NH}^{\dagger} \text{COH}^{-}}{\text{C_{S}} \text{H_{S}} \text{NH}^{\dagger}} \\ \end{array}$ CO_{3}^{2} + $H_{0} \ge HCO_{3}^{2}$ + OH^{-1} $K_{1} = \frac{(HCO_{3})(OH^{-2})}{CO_{3}^{2}}$ 6.)

18.100 Write balanced equations and K_b expressions for these Brønsted-Lowry bases in water: (a) Bergaret Ion, $C_{6}H_{5}COO^{-}$ $C_{c}H_{5}COO^{-}$ + $V_{0} \approx C_{c}H_{5}COOH$ + OM b_{M} $K_{s} = \frac{E(c_{c}H_{5}COOH) + OH}{C_{c}H_{5}COOH}$ 18.108 (a) What is the *K*_b of the benzoate ion, $\frac{K_{a} \text{ for benzoic acid equals } 6.3 \times 10^{5}}{K_{a} K_{b}} = K_{a}$ $K_{b} = \frac{10^{-N}}{10^{-S}} = 1.59 \times 10^{-S}$

	Polypro furnish more the solution.			H+) to	
]	$H_2CO_3 \leftrightarrow H^+$	$+ \text{HCO}_3^-$	(K	_{a1})	
]	$\mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{H}^{+}$	$+ CO_3^{2-}$	(<i>K</i>	_{a2})	
Name and Formula	Lewis Structure [†]		K _{a1}	K _{a2}	K _{a3}
Carbonic acid H ₂ CO ₃	:0: ∥ н—ё—с—ё—н		4.5×10 ⁻⁷	4.7×10 ⁻¹¹	-

Acid-Base Properties of Salts					
		Acidic			
<u>Cation</u>	<u>Anion</u>	<u>or Basic</u>	<u>Example</u>		
neutral	neutral	neutral	NaC1		
neutral	conj base of weak acid	basic	NaF		
conj acid o weak base		acidic	NH₄Cl		
conj acid o weak base	.	depends on $K_a \& K_b$ values	Al ₂ (SO ₄) ₃		
			and the second		

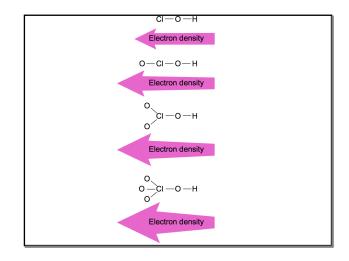
Problem

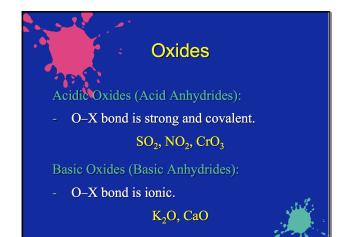
Sorbic acid (C₅H₇COOH) is a weak monoprotic acid with $K_a = 1.7 \times 10^{-5}$. Its salt (potassium sorbate) is added to cheese to inhibit the formation of mold.

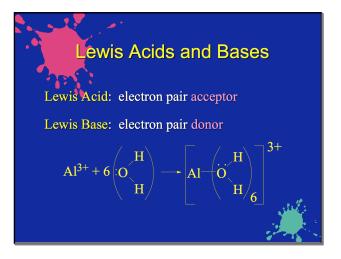
What is the pH of a solution containing 9.50 g of potassium sorbate in 2.00 L of solution?

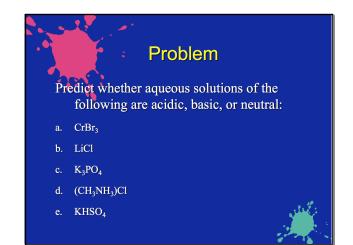
Problem

Trisodium phosphate (Na₃PO₄) is available in hardware stores as TSP and is used as a cleaning agent. The label on a box of TSP warns that the substance is very basic (caustic or alkaline). What is the pH of a solution containing 35.0 g of TSP in a liter of solution?






, , , , ,


- Bond Polarity (high is good)
- Bond Strength (low is good)

