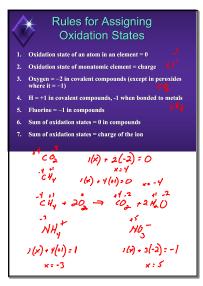
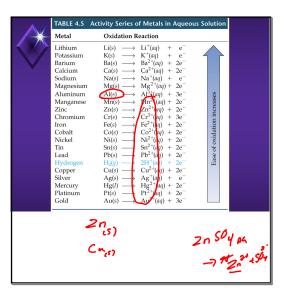
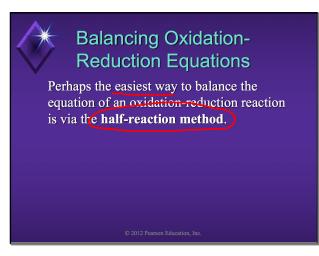

© 2012 Pearson Education, Inc.


© 2012 Pearson Education, Inc.


April 23, 2018



oxidation: increase in oxidation state (loss of electrons)

reduction: decrease in oxidation state (gain of electrons)

Balancing Oxidation-Reduction Equations

This method involves treating (on paper only) the oxidation and reduction as two separate processes, balancing these half-reactions, and then combining them to attain the balanced equation for the overall reaction.

Balancing by Half-Reaction Method

- 1. Write separate reduction, oxidation reactions.
- 2. For each half-reaction:
 - Balance elements (except H, O)
 - Balance O using H₂O
 - Balance H using H⁺
 - Balance charge using electrons

*Balancing by Half-Reaction Method (continued)

- 3. If necessary, multiply by integer to equalize electron count.
- 4. Add half-reactions.
- 5. Check that elements and charges are balanced.

Half-Reaction Method -**Balancing in Base**

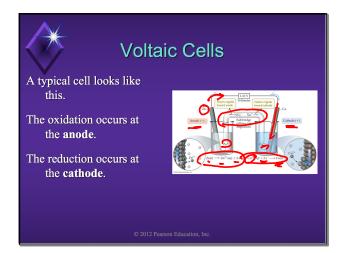
- 1. Balance as in acid.
- 2. Add OH^- that equals H^+ ions (both sides!)
- 3. Form water by combining H⁺, OH⁻.
- 4. Check elements and charges for balance.

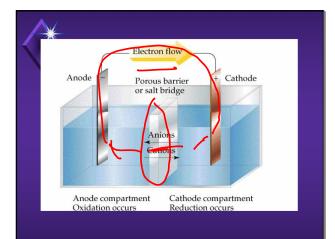
Problem
Complete and balance the following equations, and identify the oxidizing and reducing agents:
(c) Equation $I_2(s) + OCI'(aq) \rightarrow IO_3(aq) + CI'$
(acidic solution)
(e) Equation
$MnO_4(aq) + Br(aq) \rightarrow MnO_2(s) + BrO_3(aq)$
(basic solution)
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
I2+ 40+ 5001 -> 2103+24++501

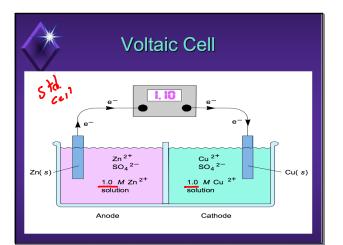
Electrochemistry

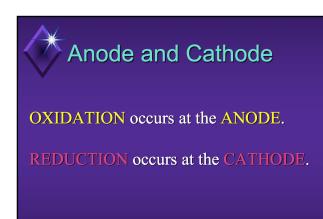
The study of the interchange of chemical and electrical energy.

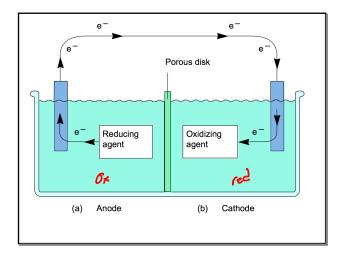
Half-Reactions

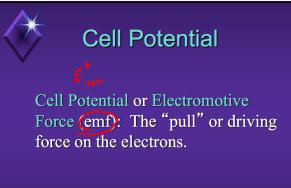

The overall reaction is split into two half-reactions, one involving oxidation and one reduction.

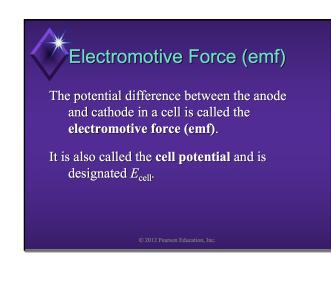

 $8H^+ + MnO_4^- + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$ Reduction: $8H^+ + MnO_4^- + 5e^- \rightarrow Mn^{2+} + 4H_2O$ Oxidation: $5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-}$

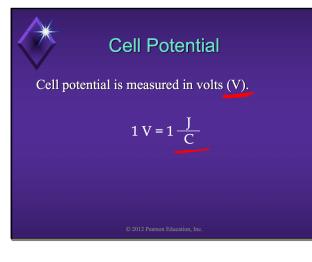

Voltaic Cell

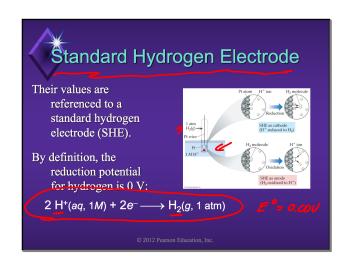

A device in which chemical energy is changed to electrical energy.

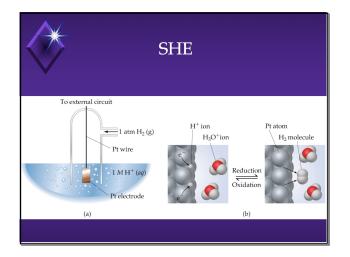

Voltaic Cells Voltaic Cells Zn electrode in 1 M ZnSO₄ solution In spontaneous We can use that energy to Cu electrode in 1 M CuSO₄ solution oxidation-reduction do work (redox) reactions, if we make the electrons are electrons flow through transferred and an external device. energy is released. We call such a setup a voltaic cell. Solutions in contact with each other through porous glass dis

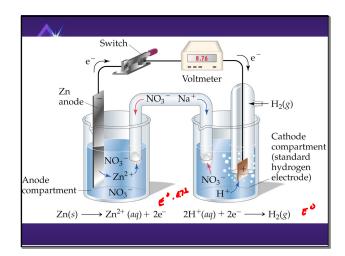












Standard Reduction Potentials

The E° values corresponding to reduction half-reactions with all solutes at 1M and all gases at 1 atm.

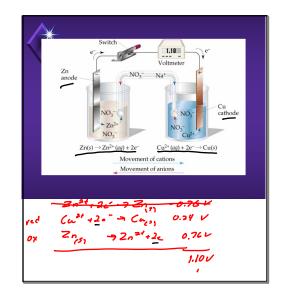
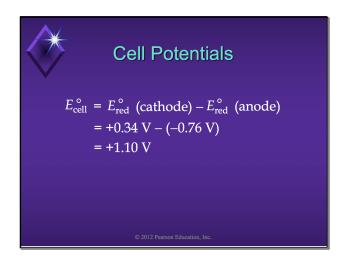
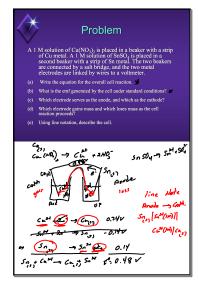
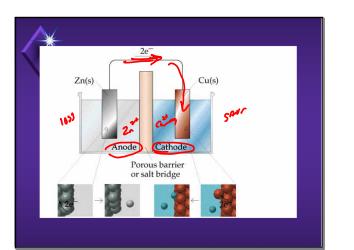

 $Cu^{2+} + 2e^- \rightarrow Cu$ $E^\circ = 0.34 \text{ V vs}$ SHE $SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$ $E^\circ = 0.20 \text{ V vs}$. SHE

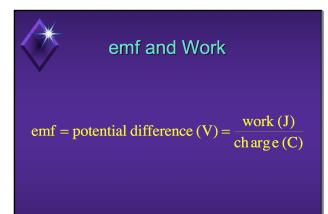
Table 17.1 Standard Reduction Po Common Half-reactions		25°C (298 K) for Many	
Half-reaction	ξ°(V)	Half-reaction	ξ°(V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4HO^-$	0.40
$Aa^{2+} + e^- \rightarrow Aa^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.34
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	AgĈI + e⁻ → Ag + ČI⁻	0.22
Ce ^{4+[*]} + e ⁻ → Ce ³⁺	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2SO_3 + H_2O_3$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^* + 2e^- \rightarrow H_2$	0.00
$2e^- + 2H^+ + IO_4^- \rightarrow IO_3^- + H_2O^-$	1.60	Fe ³⁺ + 3e ⁻ → Fe	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
Au ³⁺ + 3e ⁻ → Au	1.50	$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	Ni ²⁺ + 2e ⁻ → Ni	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^* + 4e^- \rightarrow 2H_2O$	1.23	Fe ²⁺ + 2e ⁻ → Fe	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr_{-}^{3+} + e^{-} \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O^-$	1.20	Cr ³⁺ + 3e ⁻ → Cr	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	Zn ²⁺ + 2e ⁻ → Zn	-0.76 •
$V\tilde{O}_2 + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$Au\tilde{C}I_4^- + 3e^- \rightarrow Au + 4CI^-$	0.99	Mn ²⁺ + 2e ⁻ → Mn	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	Al ³⁺ + 3e ⁻ → Al	-1.66
$CIO_2 + e^- \rightarrow CIO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	Mg ²⁺ + 2e ⁻ → Mg	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	La ³⁺ + 3e ⁻ → La	-2.37
$Hg_2^{2^+} + 2e^- \rightarrow 2Hg^+$	0.80	Na ⁺ + e ⁻ → Na	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	Ba ²⁺ + 2e ⁻ → Ba	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2^-}$	0.56	$K^* + e^- \rightarrow K$	-2.92
$l_2 + 2e^- \rightarrow 2l^-$	0.54	Li ⁺ + e ⁻ → Li	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		

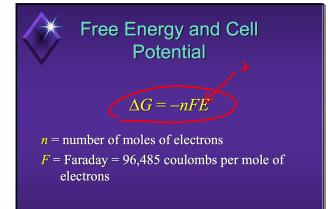

Standard Cell Potentials The cell potential at standard conditions can be found through this equation: $E_{cell}^{\circ} = E_{red}^{\circ}$ (cathode) – E_{red}° (anode) = 0.34 – (-0.76) = // Because cell potential is based on the potential energy per unit of

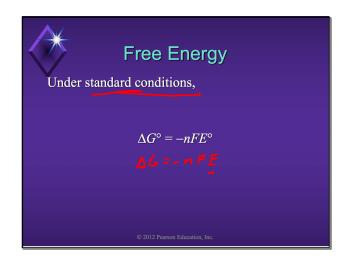
the potential energy per unit of charge, it is an intensive property.

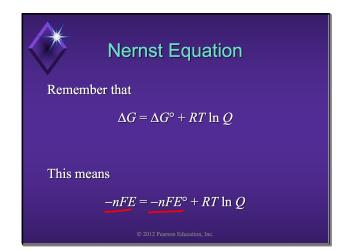

© 2012 Pearson Education, Inc.

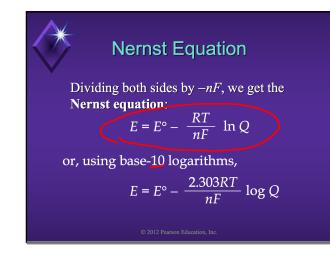


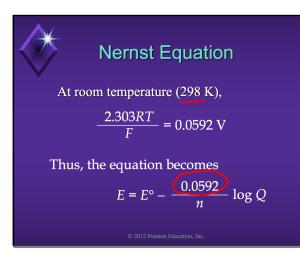

Table 17.1 Standard Reduction Pol Common Half-reactions		25°C (298 K) for Many	
Half-reaction	ξ°(V)	Half-reaction	ξ°(V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	O ₂ + 2H ₂ O + 4e ⁻ → 4HO ⁻	0.40
$Aa^{2+} + e^- \rightarrow Aa^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.34
$H_2O_2 + 2H^* + 2e^- \rightarrow 2H_2O$	1.78	AgCl + e ⁻ → Ag + Cl ⁻	0.22
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	1.70	SO_4^{2-} + 4H ⁺ + $2e^- \rightarrow H_2SO_3$ + H_2SO_3 + H_2O_3	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^* + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^* + 2e^- \rightarrow H_2$	0.00
$2e^- + 2H^+ + IO_4^- \rightarrow IO_3^- + H_2O^-$	1.60	Fe ³⁺ + 3e ⁻ → Fe	-0.036
MnO ₄ ⁻ + 8H [*] + 5e ⁻ → Mn ^{2*} + 4H ₂ O	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
Au ³⁺ + 3e ⁻ → Au	1.50	$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	Ni ²⁺ + 2e ⁻ → Ni	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_{2}O_{7}^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^* + 4e^- \rightarrow 2H_2O$	1.23	Fe ²⁺ + 2e ⁻ → Fe	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
IO ₃ ⁻ + 6H ⁺ + 5e ⁻ → 1/ ₂ I ₂ + 3H ₂ O ⁻	1.20	Cr ³⁺ + 3e ⁻ → Cr	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2 + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	Mn ²⁺ + 2e ⁻ → Mn	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	Al ³⁺ + 3e ⁻ → Al	-1.66
$CIO_2 + e^- \rightarrow CIO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	Mg ²⁺ + 2e ⁻ → Mg	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	La ³⁺ + 3e ⁻ → La	-2.37
$Hg_2^{2^+} + 2e^- \rightarrow 2Hg^+$	0.80	Na ⁺ + e ⁻ → Na	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	Ca ²⁺ + 2e ⁻ → Ca	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	Ba ²⁺ + 2e ⁻ → Ba	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2}$	0.56	$K^* + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	Li⁺ + e⁻ → Li	-3.05
Cu ⁺ + e ⁻ → Cu	0.52		

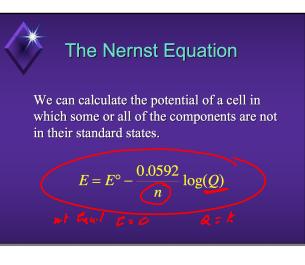



Table 17.1 Standard Reduction Po Common Half-reactions		25°C (298 K) for Many	
Half-reaction	ξ°(V)	Half-reaction	ξ°(V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4HO^-$	0.40
$Ag_{2^{+}}^{2^{+}} + e^{-} \rightarrow Ag_{2^{+}}^{+}$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$\operatorname{Co}^{3+} + e^- \rightarrow \operatorname{Co}^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.34
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ Ce ⁴⁺ + e ⁻ → Ce ³⁺	1.78 1.70	$AgCl + e^- → Ag + Cl^-$ SO ₄ ²⁻ + 4H ⁺ + 2e ⁻ → H ₂ SO ₃ + H ₂ SO ₃ + H ₂ O	0.22 0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$ 30_4^- + 4n + 2e \rightarrow n_2 30_3 + n_2 30_3 + n_2 0 Cu^{2+} + e^- \rightarrow Cu^+$	0.20
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2^- + 2H_2O$	1.68	$2H^* + 2e^- \rightarrow H_2$	0.00
$2e^- + 2H^+ + 10_4^- \rightarrow 10_5^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036
$MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O$	1.51	$Pb^{2*} + 2e^- \rightarrow Pb$	-0.13
Au ³⁺ + 3e ⁻ → Au	1.50	$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$\mathbb{N}^{2^+} + 2e^- \rightarrow \mathbb{N}^{2^+}$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_{2}O_{7}^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^* + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2*} + 2e^- \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O^-$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2*} + 2e^- \rightarrow Zn$	-0.76
$VO_2 + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_{3}O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$Au\bar{C}I_4^- + 3e^- \rightarrow Au + 4CI^-$ $NO_2^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.99 0.96	$\begin{array}{c} Mn^{2*} + 2e^{-} \rightarrow Mn^{-} \\ Al^{3*} + 3e^{-} \rightarrow Al \end{array}$	-1.18 -1.66
$O_3 + 4\Pi + 30 \rightarrow OO + 2\Pi_2O$ $OO_2 + e^- \rightarrow OO_2^-$	0.96	$H_2 + 3e^- \rightarrow 2H^-$	-1.00
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.954	$M_2 + 2e \rightarrow 2H$ $Mq^{2+} + 2e^- \rightarrow Mq$	-2.23
$Ag^+ + e^- \rightarrow Ag$	0.80	La ³⁺ + 3e ⁻ \rightarrow La	-2.37
$Hg_{2}^{2+} + 2e^{-} \rightarrow 2Hg^{+}$	0.80	Na ⁺ + e ⁻ → Na	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	Ca ²⁺ + 2e ⁻ → Ca	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{22}$	0.56	$K^* + e^- \rightarrow K$	-2.92
l ₂ + 2e ⁻ → 2l ⁻	0.54	Li ⁺ + e ⁻ → Li	-3.05
$\hat{C}u^+ + e^- \rightarrow Cu$	0.52	1	

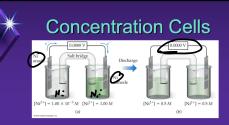






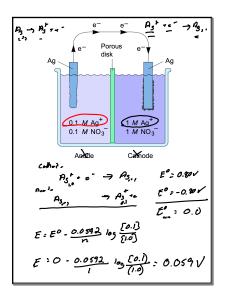


April 23, 2018

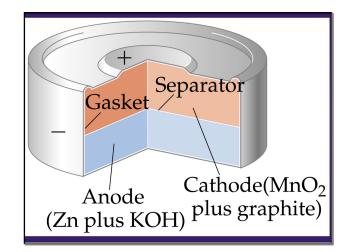


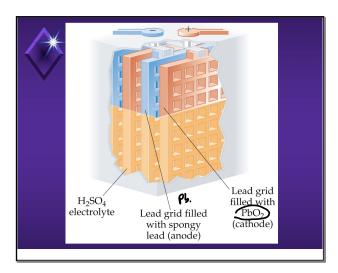
Problem – Electrochemical Sensors
A voltaic cell is constructed that is based on the following reaction:
$\operatorname{Sn}^{2+}(aq) + \operatorname{Pb}(s) \longrightarrow \operatorname{Sn}(s) + \operatorname{Pb}^{2+}(aq)$
(a) If the concentration of Sn ²⁺ in the eathode compartment is 1.00 M and the cell generates an ent of +0.22 V, what is the concentration of Pb ⁺ in the anode compartment?
Pb, -> Pb+ +2. 0.13 V
Snow + 2 = Sn - 0.14 V
E°:-0.01V
(E: E" - 0.0592 log (Pb24) 5. 2"
[P62] = 1.7 × 10.8 M
E-E" = - 0.0592 logQ
$\frac{-(E-E^0)n}{0.0592} = \log Q$
Q: 10 [-(E-E)m] = 1.7×10-8
$\frac{\int \rho_b^{(2+)}}{\int \int \sigma_n^{(2+)}} = 1.7 \times 10^{-17}$

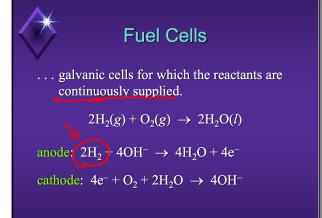
Concentration Cell

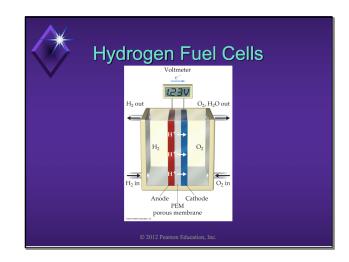

... a cell in which both compartments have the same components but at different concentrations.

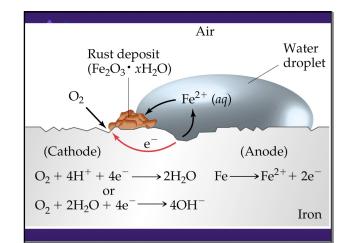
Notice that the Nernst equation implies that a cell could be created that has the same substance at both electrodes.


- For such a cell, E_{cell}° would be 0, but *Q* would not.
- Therefore, as long as the concentrations are different, *E* will not be 0.

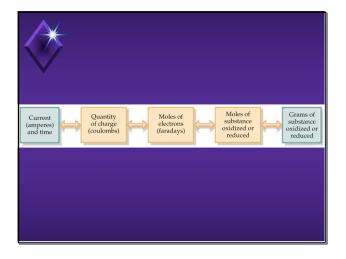

© 2012 Pearson Education, Inc.



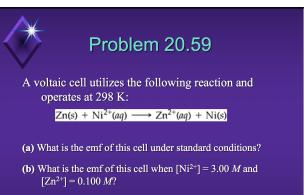




Problem During a period of discharge of a lead-acid battery, 402 g of Pb from the anode is converted intc PbSO2(aq). What mass of PbO2(s) is reduced at the cathode during this same period? P550 -> P52+ + 50,2-What happens when this battery is recharged? Anole Рь, - Pb2+ + 22-Cathe de P624 -2H2O 22- Pb0, Pb + Pb0 + 44" 62P62+ 2H20 402 g Pb x Inol Pb y Inol Pb y Inol Pb y Inol Pb y Inol Pb × 239.2 9902 - 464 5 PW2



Electrolysis


... forcing a current through a cell to produce a chemical change for which the cell potential is negative.

Stoichiometry of Electrolysis

- How much chemical change occurs with the flow of a given current for a specified time?
 - current and time \rightarrow quantity of charge \rightarrow moles of electrons \rightarrow moles of analyte \rightarrow grams of analyte

(c) What is the emf of the cell when $[Ni^{2+}] = 0.200 M$ and $[Zn^{2+}] = 0.900 M$?

Energy and Electrochemistry Review

Spontaneity, Entropy, and Free Energy

1. For the reaction at 298 K, $2\mathrm{NO}_{2(g)} \leftrightarrow \mathrm{N_2O}_{4(g)}$

$$\label{eq:sigma_state} \begin{split} \Delta S^o &= -176.6 \ J/K \ mole \qquad \text{and} \\ \Delta H^o &= -58.03 \ kJ/mole \end{split}$$

- a. What is the value of ΔG° at 298 K?
- b. Assume that ΔH^o and ΔS^o do not depend on temperature. At what temperature is $\Delta G^o = 0$?

c. Is ΔG° negative above or below this temperature, why?

2. Hydrogen sulfide can be removed from natural gas by the reaction,

 $2H_2S_{(g)} + SO_{2(g)} \leftrightarrow 3S_{(s)} + 2H_2O_{(g)}$

a. Calculate ΔG^{o} and K for this reaction at 298K.

b. Would this reaction be favored at high or low temperatures, why?

Electrochemistry

3. For the galvanic cell, at 25 degrees Celsius, based on the following half reactions:

$$Al^{3+}_{(aq)} + 3e^{-} \rightarrow Al_{(s)} \qquad E^{\circ} = -1.66 V$$

 $Ni^{2+}_{(aq)} + 2e^{-} \rightarrow Ni_{(s)} = -0.23 V$

- a. Determine the overall cell reaction and E^{o} for the cell.
- b.Calculate ΔG^0 and K for the cell reaction.
- c. Draw as complete a picture of the cell as you can (Label everything).

Challenge Problem

4. Combine the equations

 $\Delta G^{o} = -nFE^{0}$ and $\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$

to derive an expression for E^o as a function of temperature. Describe how one can graphically determine ΔH^o and ΔS^o from the measurements of E^o at different temperatures.

