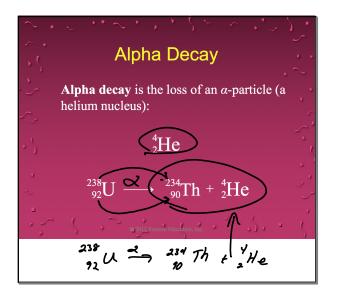
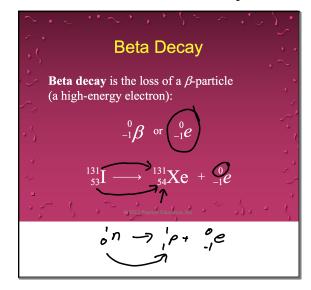

January 31, 2018





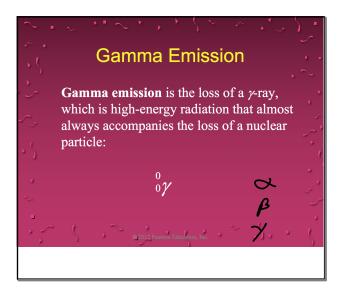
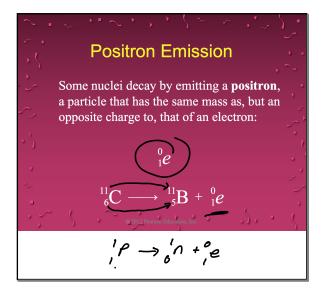
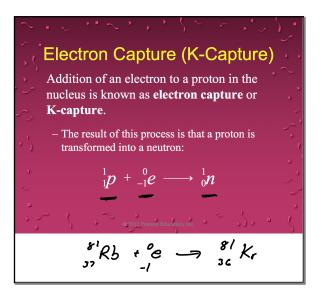
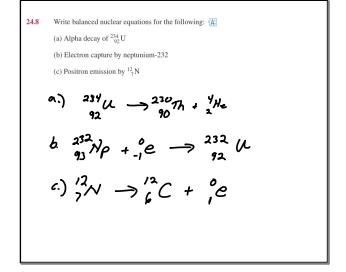
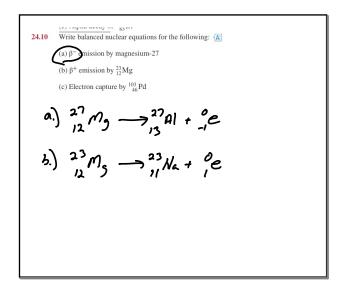


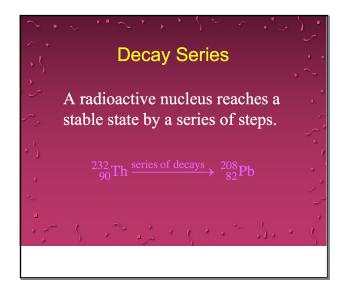
TABLE 21.2 • Particles Found in Nuclear Reactions		
Particle	Symbol	~
Neutron	$^{1}_{0}$ n	٠
Proton	$^{1}_{1}$ H or $^{1}_{1}$ p	
Electron	$^{0}_{-1}e$	
Alpha particle	4_2 He or ${}^4_2\alpha$	~
Beta particle	$_{-1}^{0}$ e or $_{-1}^{0}\beta$	-
Positron	$^{0}_{1}e$	
0 2012 Pearson Education, Inc.		_ {

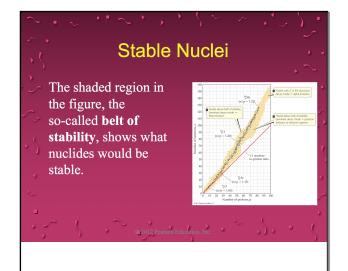


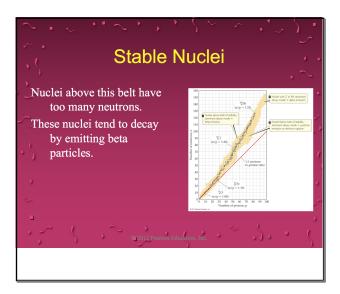


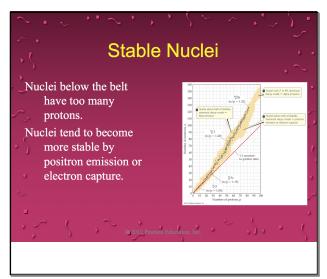


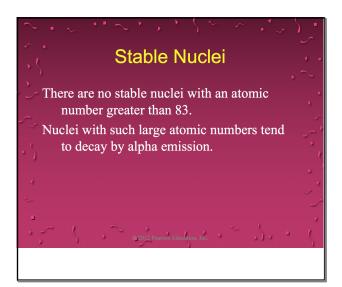

!	_	
	β	γ
+	1-	0
$.64 imes 10^{-24} \mathrm{g}$	$9.11 \times 10^{-28} \mathrm{g}$	0
	100	10,000
He nuclei	Electrons	High-energy photon
	+ .64 × 10 ⁻²⁴ g He nuclei	$.64 \times 10^{-24} \mathrm{g}$ $9.11 \times 10^{-28} \mathrm{g}$ 100

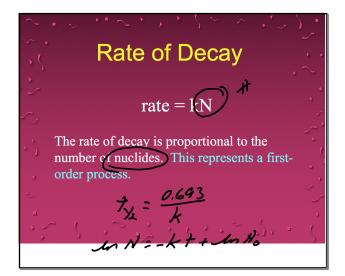


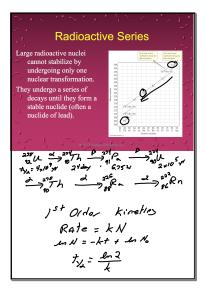

Nuclear Decay where the Sidentity of the element changes					
TABLE 21.3 • 1 Type	Types of Radioactive Dev Nuclear Equation	cay Change in Atomic Number	Change in Mass Number		
Alpha decay	$^{A}_{ZX} \longrightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$	-2	-4		
Beta emission	$^{A}_{ZX} \longrightarrow ^{A}_{Z+1}Y + ^{0}_{-1}e$	+1	Unchanged		
Positron emission	$^{A}_{ZX} \longrightarrow ^{A}_{Z-1}Y + ^{0}_{1}e$	-1	Unchanged		
Electron capture*	${}^{A}_{Z}X + {}^{0}_{-1}e \longrightarrow {}^{A}_{Z-1}Y$	-1	Unchanged		
*The electron captured co	omes from the electron cloud surrour	nding the nucleus.	5. • 5		

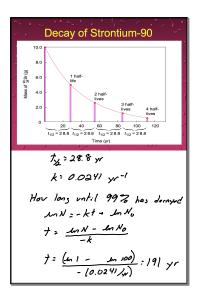



Write balanced nuclear equations for the following: 🕼 24.14 (a) Formation of ¹⁸⁶Ir through electron capture (b) Formation of francium-221 through α decay (c) Formation of iodine-129 through β^- decay $a)^{\prime\prime\prime}_{28} \rho t_{+} \circ e \longrightarrow {}^{\prime\prime\prime}_{77} I_{r}$ b.) 225 Ac -> 221 Fr + 4 He c) 129 52 Te - 129 + 0e






January 31, 2018



٦

Problem It takes 5.2 minutes for a 1.000-g sample of 210 Fr to decay to 0.367 g. What is the half-life of 210 Fr? Rate = kN MN = -kt + MN, $T_{12} = \frac{0.693}{k}$ en (0.36) = - k (5.2 min) + en (1.00) k = 0,192 min-1 ty = 3,61 min

24.33 What is the specific activity (in Ci/g) if 1.65 mg of an isotope emits 1.56×10⁶ a particles per second?
1 Ci = 3.7 × 10¹⁰ dis/s
1.5C × 10⁶ dis/s ×
$$\frac{1}{3.7 \times 10^{10}} \frac{c_1}{3.3} = 4.22 \times 10^5 c_1^2$$

 $\frac{4.22 \times 10^{-5} c_1}{1.65 \times 10^{-3} g} = 2.5 \times 10^{-2} c_1^2$
1.65 mg $\sim \frac{13}{1000 m_5} = 1.65 \times 10^{-3} g$

Г

24.35 What is the specific activity (in Bq/g) if 8.58 µg of an isotope emits 7.4×10⁴
$$\alpha$$
 particles per minute?
1 Bq = 1 dis/s
7.4/×10⁴ $\frac{d_{15}}{m_{17}} \times \frac{1 m_{17}}{GO_3} \times \frac{1 B_{\odot}}{1 d_{15}/_3} : 1233 D_2$
 $\frac{1233 D_2}{8.58 \times 10^{-6} g} = 1.44 \times 10^{16} \frac{B_2}{3}$

Problem
The cloth shroud from around a mummy is
found to have a ¹⁴C activity of 9.7
disintegrations per minute per gram of
carbon. Living organisms undergo 16.3
disintegrations per minute per gram of
carbon. Calculate the age of the shroud.
(
$$t_{1/2}$$
 for ¹⁴C is 5715 years)
 $t_{3/2} = \frac{4\pi^2}{4}$ $k: 1.21 \times 10^{5} \text{ yr}^{-1}$
 $M_1 N: -kt + 4m N_0$
 $M_2(q,7) = -(1.21 \times 10^{5} \text{ yr}) + 4m 16.3$
 $t = 42.78 \text{ yr}$

(4.3) If
$$1.00 \times 10^{-12} \text{ mol of } ^{13}\text{Cs emits } 1.39 \times 10^{5} \beta^{-} \text{ particles in } 1.00 \text{ yr, what is the decay constant?}
Rate = kW k k Markov k k Markov k k markov k$$

