The Nucleus

```
Mass number (number of
protons plus neutrons)
                                    , }\mp@subsup{}{6}{12}\textrm{C}\longleftarrow\mathrm{ Symbol of element
Atomic number (number
of protons or electrons)
```

Remember that the nucleus is composed of the two nucleons, protons and neutrons.
The number of protons is the atomic number.
The number of protons and neutrons together is effectively the mass of the atom.

Isotopes

Not all atoms of the same element have the same mass, due to different numbers of neutrons in those atoms.
There are, for example, three naturally occurring isotopes of uranium:

- Uranium-234
$p=92$
$n=234$
-92
- Uranium-235
- Uranium-238

Radioactivity

It is not uncommon for some nuclides of an element to be unstable, or radioactive.
We refer to these as radionuclides.
There are several ways radionuclides can decay into a different nuclide.

TABLE 21.2 Particles Found in Nuclear Reactions

Particle	Symbol
Neutron	${ }_{0}^{1} \mathrm{n}$
Proton	${ }_{1}^{1} \mathrm{H}$ or ${ }_{1}^{1} \mathrm{p}$
Electron	${ }_{-1}^{0} \mathrm{e}$
Alpha particle	${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$
Beta particle	${ }_{-1}^{0} \mathrm{e}$ or ${ }_{-1}^{0} \beta$
Positron	${ }_{1}^{0} \mathrm{e}$

Alpha Decay

Alpha decay is the loss of an α-particle (a helium nucleus):

Gamma Emission

Gamma emission is the loss of a γ-ray, which is high-energy radiation that almost always accompanies the loss of a nuclear particle:

Positron Emission

Some nuclei decay by emitting a positron, a particle that has the same mass as, but an opposite charge to, that of an electron:

Electron Capture (K-Capture)

Addition of an electron to a proton in the nucleus is known as electron capture or K-capture.

- The result of this process is that a proton is transformed into a neutron:

$$
{ }_{1}^{1} p+{ }_{-1}^{0} e \longrightarrow{ }_{0}^{1} n
$$

$$
{ }_{37}^{81} \mathrm{Rb}+{ }_{-1}^{0} \mathrm{e} \longrightarrow{ }_{36}^{81} \mathrm{Kr}
$$

24.8 Write balanced nuclear equations for the following: $\langle\mathrm{A}:$
(a) Alpha decay of ${ }_{92}^{234} \mathrm{U}$
(b) Electron capture by neptunium- 232
(c) Positron emission by ${ }_{7}^{12} \mathrm{~N}$
a.) ${ }_{92}^{234} \mathrm{u} \rightarrow{ }_{90}^{230} \mathrm{Th}+{ }_{2}^{4 / \mathrm{He}}$
b. ${ }_{93}^{232} \mathrm{~N}_{p}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{92}^{232} \mathrm{u}$
c.) ${ }_{7}^{12} N \rightarrow{ }_{6}^{12} C+{ }_{1}^{0} e$
24.14 Write balanced nuclear equations for the following: $\{$ A:
(a) Formation of ${ }^{186}$ Ir through electron capture
(b) Formation of francium- 221 through α decay
(c) Formation of iodine-129 through β^{-}decay
a) ${ }_{98}^{126 r_{+}}{ }_{-1}^{0} e \rightarrow{ }_{71}^{186} I_{r}$
b.) ${ }_{89}^{225} \mathrm{Ac} \rightarrow{ }_{87}^{221} \mathrm{Fr}_{r}+{ }_{2}^{4} \mathrm{He}$
c.) ${ }_{52}^{129} \mathrm{Te} \longrightarrow{ }_{53}^{129} \mathrm{I}+{ }_{-1}^{0} \mathrm{e}$

Stable Nuclei

The shaded region in the figure, the so-called belt of stability, shows what nuclides would be stable.

Stable Nuclei

Nuclei above this belt have too many neutrons.
These nuclei tend to decay by emitting beta particles.

Stable Nuclei

There are no stable nuclei with an atomic number greater than 83 .
Nuclei with such large atomic numbers tend to decay by alpha emission.

Stable Nuclei

Nuclei below the belt have too many protons.
Nuclei tend to become more stable by positron emission or electron capture.

Rate of Decay

$$
\text { rate }=\mathbb{N})^{\star}
$$

The rate of decay is proportional to the number nuclides. This represents a firstorder process.

$$
t_{y_{2}}=\frac{0.693}{k}
$$

Problem

It takes 5.2 minutes for a $1.000-\mathrm{g}$ sample of ${ }^{210} \mathrm{Fr}$ to decay to 0.367 g . What is the half-life of ${ }^{210} \mathrm{Fr}$?

Rate $=k N$
$\ln N=-k t+\ln N$
$t_{12}=\frac{0.693}{k}$

$$
\begin{aligned}
& \ln (0.367)=-k(5.2 \min)+\operatorname{sn}(1.00) \\
& k=0.992 \mathrm{~min}^{-1} \\
& t_{1 / 2}=3.61 \mathrm{~min}
\end{aligned}
$$

$$
\begin{aligned}
& \text { What is the specific activity (in } \mathrm{Bq} / \mathrm{g} \text {) if } 8.58 \mu \mathrm{~g} \text { of an isotope emits } 7.4 \times 10^{4} \propto \text { particles per minute? }\langle\mathrm{A}: \\
& 1 \mathrm{~Bq}=1 \mathrm{dis} / \mathrm{s} \\
& 2.4 \times 10^{4} \frac{\mathrm{dis}}{\min } \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{1 \mathrm{~B}_{2}}{1 \mathrm{dis/3}}=1233 \mathrm{D} \mathrm{D}_{2} \\
& \frac{1233 B_{2}}{8.58 \times 10^{-6} 9}=1.44 \times 10^{\frac{8}{8}} \frac{B_{2}}{9}
\end{aligned}
$$

4.33 What is the specific activity (in Cig) if 1.65 mg of an isotope emits $1.56 \times 10^{6} \alpha$ particles per second? $\mathrm{A}:$

$$
1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{dis} / \mathrm{s}
$$

$$
1.5 c \times 10^{6} \mathrm{dis} / \mathrm{s} \times \frac{1 \mathrm{ci}_{i}}{3.7 \times 10^{10} \frac{\mathrm{dis}}{v}}=4.22 \times 10^{-5} \mathrm{ci}^{\circ}
$$

$$
\frac{4.22 \times 10^{-5} c_{i}}{1.65 \times 10^{-3} \mathrm{~g}}=2.5 \times 10^{-2} \frac{\mathrm{ci}}{\mathrm{~g}}
$$

$$
1.65 \mathrm{~ms}+\frac{18}{1000 \mathrm{~ms}}=1.65 \times 10^{-3}
$$

Problem

The cloth shroud from around a mummy is
found to have a ${ }^{14} \mathrm{C}$ activity of 9.7
disintegration per minute per gram of
carbon. Living organisms undergo 16.3
disintegration per minute per gram of
carbon. Calculate the age of the shroud.
($\mathrm{t}_{1 / 2}$ for ${ }^{14} \mathrm{C}$ is 5715 years)

$$
\begin{aligned}
& t_{1 / 2}=\frac{\ln 2}{4} \quad k: 1.21 \times 10^{-4} y r r r_{-1} \\
& \ln N=-k t+\ln N_{0} \\
& \operatorname{m}(9.7)=-\left(1.21 \times 10^{-v} / w\right)+\ln 16.3 \\
& t=4278 \mathrm{yr}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rate }=k / V \\
& \ln N=-k r+\ln N_{0} \\
& t_{y 2}=\frac{\ln 2}{k} \\
& \text { Rate }=k N=1.39 \times \frac{10^{5} \text { part. }}{y r} \\
& K=\frac{1.39 \times 10^{5} \frac{\text { nor } \mu}{\nu /}}{N} \\
& 1.00 \times 10^{-12} \mathrm{mel}{ }^{125} \mathrm{c}, \times \frac{6.022 \times 10^{23} \mathrm{Min}_{3} \mathrm{C}_{5}}{1 \mathrm{~mol} 1 \mathrm{~B}_{3}}=6.02 \\
& K: \frac{1.39 \times 10^{5} h r}{6.02 \times 10^{11}}: 2.31 \times 10^{-7} / \times 10^{11} c_{s}
\end{aligned}
$$

1 The isotope ${ }_{83}^{22}$ Bi has a half-life of 1.01 yr . What mass (in mg) of a 2.00 -mg sample will remain after $3.75 \times 10^{3} \mathrm{~h}$?

$$
1 \mathrm{yr}=8760 \mathrm{hr}
$$

