varian

Calcium

A.W. 40.08

Preparation of standard solutions

Recommended standard materials

Calcium carbonate

Solution technique

Dissolve 2.497 g of dried calcium carbonate in a minimum volume of 1:4 nitric acid. Dilute to 1 litre to give 1000 μ g/mL Ca.

Recommended instrument parameters

CaCO₃

Atomic absorption

WORKING CO	ONDITIONS (FIXED)
Lamp current	10 mA
Fuel	acetylene
Support	nitrous oxide
Flame stoichiometry	reducing; red cone 1-1.5 cm high

WORKING CONDITIONS (VARIABLE)		
Wavelength	Slit width nm	Optimum working range µg/mL
422.7 239.9	0.5 0.2	0.01-3 2-800

Flame emission

Wavelength Slit width Fuel	422.7 nm
	0.1 nm
	acetylene
	nitrous oxide
Support	

Maximum intensity is obtained with an oxidizing nitrous oxide-acetylene flame (red cone 1 mm high).

▼ Interferences

Chemical interferences in the air-acetylene flame are pronounced and have been fairly well documented (1,2,3,4). These interferences which depress the calcium absorbance can be eliminated by the

introduction of a releasing agent such as strontium (5000 μ g/mL) or lanthanum (10000 μ g/mL). Normally the addition of a releasing agent is used in conjunction with the practice of matching sample and standard solutions to obviate combined interference effects.

The presence of excess sodium or potassium causes 5-10% signal enhancement due to suppression of ionization.

In the nitrous oxide-acetylene flame the main interference is caused by ionization of calcium itself. This is overcome by the addition of a more readily ionizable element such as potassium (2000-5000 μ g/mL).

References

- 1. Adams, P.B. and Passmore, W.O., Anal. Chem., **38**, (4), 630 (1966).
- 2. Ramakrishna, T.V., et al., Anal. Chim. Acta., 40, 347 (1968).
- Hwang, J.Y., and Sandonato, L., Anal. Chim. Acta, 48, 188 (1969)

CONCENTRATION µg/ml

Standard conditions