Variable(s) of Interest	Parameter of Interest	Statistic of Interest	Descriptive Method(s)	Inferential Method(s)	Assumption(s) for Inferential Methods
Single Categorical Variable	True Population Proportion (π)	Sample Proportion ($\hat{\pi}$)	 Report π̂ Bar chart Pie chart Mosaic plot 	 Binomial test Cl for π 	Check the four conditions for the binomial
Two Categorical Variables (each with 2 levels)	True Difference in Population Proportions $(\pi_1 - \pi_2)$ OR Relative Risk/Odds Ratio of the Population	Difference in Sample Proportions $(\hat{\pi}_1 - \hat{\pi}_2)$ OR Sample Relative Risk/Odds Ratio	 Report sample proportions Report difference in proportions, relative risk, or odds ratio Contingency table Mosaic plot 	 Fisher's exact test Chi-square test Cl for difference in proportions, relative risk, or odds ratio 	 Each observation can be classified into only one cell of the contingency table Observations are independent Most EXPECTED counts should be greater than 5 for the chi-square test to work well
Two Categorical Variables (in general)	True Population Proportions	Sample Proportions	 Report sample proportions Contingency table Mosaic plot 	 Chi-square test 	 Each observation can be classified into only one cell of the contingency table Observations are independent Most EXPECTED counts should be greater than 5 for the chi-square test to work well

Variables of Interest	Parameter of Interest	Statistic of Interest	Descriptive Methods	Inferential Methods	Assumptions for Inferential Methods
Single Numerical Variable	True Population Mean (μ)	Sample Mean (x̄)	 Report measures of center and variation Dotplot, boxplot, histogram, etc. 	 One-sample t-test Cl for population mean 	 Either the sample size is fairly large or the data reasonably follow a normal distribution
Comparing Numerical Variable across Two Categories of a Categorical Variable (DEPENDENT samples)	True Mean Difference (µ _{difference})	Sample Mean Difference (Report measures of center and variation for the differences Dotplot, boxplot, histogram, etc. 	 paired t-test Cl for population mean difference 	 Either the number of pairs is fairly large or the differences reasonably follow a normal distribution
Comparing Numerical Variable across Two Categories of a Categorical Variable (INDEPENDENT samples)	Difference in True Population Means $(\mu_1 - \mu_2)$	Difference in Sample Means ($\overline{x}_1 - \overline{x}_2$)	 Report x ₁, x ₂, and s ₁, s ₂ Side-by-side boxplots, etc. 	 Two-sample t-test Cl for µ₁ - µ₂ 	 Observations are independent Either both sample sizes are fairly large or the data from each group reasonably follow a normal distribution
Comparing Numerical Variable across 2 or more categories of a Categorical Variable			 Group means, standard dev. Side-by-side boxplots 	Analysis of Variance (ANOVA)	 Independence Equal variances Normality
Comparing Two Numerical Variables			CorrelationScatterplotRegression line	Regression Analysis	 Linearity Independence Constant variance Normality