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As seen in Chapters 1-3, research hypotheses involving either a single categorical variable or 
two categorical variables require us to test claims about proportions.  When a research question 
involves a single numerical variable, however, we typically end up testing claims about the 
mean, or average. In this chapter, we will consider inferential methods (hypothesis tests and 
confidence intervals) for the mean of a single numerical variable.  Consider the following 
example. 

 
Example 5.1:  A study conducted by researchers at Pennsylvania State University investigated 
whether time perception, a simple indication of a person’s ability to concentrate, is impaired 
during nicotine withdrawal.  The study results were presented in the paper “Smoking 
Abstinence Impairs Time Estimation Accuracy in Cigarette Smokers” (Psychopharmacology 
Bulletin [2003]: 90-95).  After a 24-hour smoking abstinence, 20 smokers were asked to estimate 
how much time had passed during a 45-second period.  Suppose the resulting data on 
perceived elapsed time (in seconds) were analyzed as shown below (these results are artificial 
but are similar to the actual findings).  The data can be found in the file Nicotine1.JMP. 
 
We can use JMP to summarize the data as follows: 
 

 
Questions: 

 
1. What is the mean of the observed data?  The standard deviation? 
   

 
2. If another sample of n=20 subjects were obtained, would these new subjects have a mean 

exactly the same as the mean from this sample?  Why or why not? 
 

 
3. Given your answer to the previous question, do you think it is appropriate to use only 

this sample mean to make inferences about the mean perceived elapsed time in the 
greater population of all smokers subjected to nicotine withdrawal?  Explain.  
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The above descriptive analysis tells us what we have learned about the 20 subjects in the study.  
Our next goal is to make inferences beyond what happened in the study (i.e., we want to make 
general statements about the population).   Is the mean perceived elapsed time for all smokers 
suffering from nicotine withdrawal greater than 45 seconds?  The sample mean above was in 
fact greater than 45 seconds, but how likely were we to have obtained this result by chance 
alone even if in reality smokers suffering from nicotine withdrawal have an accurate perception 
of time?   
 
To answer this question, we must determine what values for the sample mean are expected to 
occur by chance when we take a random sample from a population with an accurate perception 
of time.  This is investigated in the next example. 
 
 
Exploring the Distribution of the Sample Mean 
 
Before we discuss the procedure for inference, let’s consider the next example to gain a better 
understanding of how the distribution of sample means works and how we use this distribution 
to make a decision concerning our research question. 
 
Example 5.2:  Another simulation study…. 
 
Suppose we set up a hypothetical population of smokers suffering from nicotine withdrawal.  
This population has been purposefully created so that the mean perceived elapsed time is 
exactly 45 seconds.

 
 
In this simulation study, what is our value of μ, the true population mean?   
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Note that in reality, the true population mean is usually an unknown quantity which we are 
trying to estimate.  Since it is not feasible to collect data on the entire population of smokers 
suffering from nicotine withdrawal, the researchers took a random sample of 20 subjects in 
order to estimate the average perceived elapsed time.  Let’s see what happens when we take 
various samples of size 20 from this population. 
 
We can use Tinkerplots to carry out this simulation.  Each of the elements in the mixer 
represents the perceived elapsed time for a smoker suffering from nicotine withdrawal in the 
population (e.g., the highlighted subject thought that 50 seconds had passed during a 45-second 
period).  We set the repeat value to 20 in order to randomly select 20 subjects from the 
population for our study. 
 

 
 
Click Run to randomly select our first sample of 20 subjects, and we can then create a plot of 
their perceived elapsed times.  Note that the mean of these 20 subjects is shown on this plot. 
 
Sample # 1: 
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Questions: 
 

1. What is the average (or mean) perceived elapsed time of the 20 subjects in this study? 
 

2. Does this necessarily mean that the average perceived elapsed time is greater than 45 
seconds for all smokers suffering from nicotine withdrawal?  What would you say to a 
researcher who tried to use only this sample mean to draw this conclusion? 

 
 

Even though in reality we would carry out a study only once, we will use Tinkerplots to take a 
sample of 20 subjects from this population over and over again so that we get an idea of how 
much the sample mean could change from sample to sample.  Our second and third random 
samples of 20 subjects and their sample means are shown below: 
 
Sample #2: 

 
 
Sample #3: 

 
 
We can start to collect these sample means in a new plot to create the distribution of sample 
means: 
 

 
 

Sample 1 
Mean

Sample 2 
Mean

Sample 3 
Mean
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To get a really good idea of what values are likely to occur by chance when taking random 
samples of size 20 from the population, we should take more than just three samples.  The 
graphic below shows the process we used to create the distribution of sample means and the 
final plot of the means of 1,000 random samples.   
 
 

 

 
 
This is a distribution of sample means.  Recall that these 1,000 samples (each consisting of 20 
subjects) came from a population with a true mean perceived elapsed time of 45 seconds.  So, 
this distribution gives us a good idea of what sample means from 20 subjects are likely (or 
unlikely) to occur by chance if the true mean is 45 seconds. 
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Next, note that the researchers wanted to show that the mean perceived elapsed time for 
smokers suffering from nicotine withdrawal was in fact greater than 45 seconds.  The null and 
alternative hypotheses to address this research question are given as follows. 
 
Ho:  The mean perceived elapsed time for smokers suffering from nicotine withdrawal is equal  
         to 45 seconds. 
 
Ha: The mean perceived elapsed time for smokers suffering from nicotine withdrawal is greater  
         than 45 seconds. 
 
Note that the distribution of sample means was created assuming the null hypothesis is true.  
To test this hypothesis, we compare our actual observed mean to this null model. If the sample 
mean from the actual research study is not likely to occur by chance according to this null 
model (i.e., if it is an outlier on this null model), then we have evidence against the null model 
and in support of the research question. 
 
Recall that in the actual research study, the mean perceived elapsed time for the 20 subjects 
studied was 55.05 seconds.  Sketch this observed value on the null model: 
 

 
 
There are two explanations for this observed mean of 55.05 seconds: either (1) the true mean 
perceived elapsed time for smokers suffering from nicotine withdrawal really is greater than 45 
seconds, or (2) their time perception is not impaired (i.e., the true mean is actually 45 seconds) 
and the sample mean was greater than 45 seconds simply because of random chance. 
 
Questions: 
 

1. Is a sample mean of 55.05 seconds likely to occur by chance if the true population mean 
is actually 45 seconds?  What does this imply about the research question? 
 
 

2. Give an approximate p-value based on this simulation study. 
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THE CENTRAL LIMIT THEOREM 
 
Note that a statistician would not necessarily carry out a simulation study such as this to 
investigate a research question.  Instead, one could use a “short-cut” known as a t-test to 
investigate a research question concerning a single population mean.  This short-cut is a result 
of something known as the central limit theorem, which states the following: 
 

Consider a random sample of n observations from ANY population with mean μ and 
standard deviation σ.   

 

 
 

The distribution of sample means will have a mean of μ and a standard deviation of nσ/ .  
When n (the number of subjects in the sample) is sufficiently large, this distribution will be 
approximately NORMAL; moreover, this approximation gets better as the sample size (n) 
increases. 

 
Basically, the Central Limit Theorem tells us that the distribution of sample means (which we 
obtained via a simulation study in Example 5.2) will take on the following properties: 

 

 
 

 The distribution will be centered at the true population mean, μ = 45. 
 

 The expected amount of variation in sample means is determined by the standard 
deviation of the distribution of sample means.  This will be 2.1.209.4/nσ/ ==  
 

 The distribution of sample means will be approximately normal, if n is sufficiently large. 
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Essentially, the Central Limit Theorem will give us an idea of what values we expect for the 
sample mean, assuming the null hypothesis is true.  Then, we can determine whether a given 
sample mean is an outlier or not based on its position on this distribution.  The only question 
that remains is this: How large must n (the number of subjects in a study) be for us to use the 
short-cut provided by the Central Limit Theorem? 
 
Question: How large must n be? 
 
 If the original population is normally distributed, then the sampling distribution of the 

mean will also be normally distributed even if the sample size n is very small. 
 

Distribution of the Population: 

 

Distribution of Sample Means when n = 2: 

 

 
 The more skewed the distribution, the larger the sample size must be before the normal 

approximation fits the distribution of sample means well.   
 

Distribution of the Population: 

 
 

Distribution of Sample Means when n = 2: 

 
 

Distribution of the Population: 

 
 

Distribution of Sample Means when n = 10: 
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Distribution of the Population: 

 

Distribution of Sample Means when n = 20: 

 
 

Distribution of the Population: 

 

Distribution of Sample Means when n = 30: 

 
 

 For almost all populations, samples of size n ≥ 30 or 40 subjects will be sufficient to say 
that the distribution of sample means is approximately normal. However, if the 
distribution is very skewed, the sample size may have to be much larger than 30 in order 
for the central limit theorem to apply. 

 
 
In summary, we can use the Central Limit Theorem to help us create a procedure for comparing 
a population mean to some hypothesized value.  This works because: 
 

1. We know the distribution of sample means will be approximately normal if either (i) the 
original population is normally distributed, or (ii) our sample size is sufficiently large. 
 

2. We know the distribution of sample means will be centered at the true population mean 
(which we can set to some hypothesized value in the null hypothesis). 
 

3. We know that the variability in the distribution of sample means is given by nσ/  (i.e., 
the variability decreases as the sample size gets larger, which we can see in the above 
examples).   

 
In the next section, we put all the pieces together to create what is known as the t-test. 
  



STAT 110:  Chapter 5 – Inferential Methods for a Single Numerical Variable 
Fall 2017 
 

 

150 
 
 

 
THE T-TEST FOR A SINGLE POPULATION MEAN 
 
Back to Example 5.1:  Recall that the researchers wanted to show that the mean perceived 
elapsed time for smokers suffering from nicotine withdrawal was greater than the actual 45 
seconds that had elapsed.  The data collected in the study were summarized as follows: 
 

 
Step 1: Set up the null and alternative hypotheses 
 
Ho: 
 
Ha: 
 
Step 2: Find the t-statistic and the p-value 
 
To determine whether the distance between μ (the hypothesized population mean) and x  (the 
mean from our observed sample) is larger than what we would expect by random chance, we 
will use the following statistic: 

 

n
s

μx
t

−
= = 

 
Why use this statistic?  Because this quantity measures the position of our observed sample 
mean on the null model, just like the Z-score discussed in the previous chapter.  

 

means sample of ondistributi the of deviation standard
means sample of ondistributi the of mean - mean sample observed

n
s

μx
t =

−
=  
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Note that this is very much like the Z-score, with one minor exception.  We don’t know the true 
population standard deviation, σ, so we must estimate it with the standard deviation calculated 
from the 20 observed subjects in the study (this estimate is commonly denoted by s).   
 
Unfortunately, for small sample sizes, this estimate is sometimes way off; so, this statistic 
doesn’t necessarily conform to the standard normal distribution with mean = 0 and standard 
deviation = 1 like it would if we knew the true standard deviation.  
 
Instead, this t-statistic comes from a probability distribution known as Student’s t-distribution, 
or just t-distribution for short (note that this holds only if a small random sample is taken from 
a population that is normally distributed or if a large random sample is taken from any 
population). 
   
The amount of variability in a t-distribution depends on the sample size n and is indexed by its 
degrees of freedom (df).  For inference on a single mean, df = n - 1. 
 
 
The following figure shows t-distributions with various degrees of freedom. 
 

 
Source: http://www.statisticshowto.com/probability-and-statistics/t-test/ 
 
 
Note that for smaller sample sizes, the t-distribution is more spread out and there is slightly 
more probability in the extreme tails of the distribution than there is for the standard normal 
distribution. 
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To find the p-value associated with this test statistic, we must remember that this is an upper-
tailed test (we are trying to find evidence that the mean is greater than 45 seconds).  So, the p-
value will be the probability we would observe a sample mean (or a t-statistic) greater than that 
obtained in the actual study by chance alone, assuming the null hypothesis is true: 
 

Original Scale of Data on the x-axis Transformed to t-scores on the x-axis (t-distribution) 

  
 
To get this p-value from JMP, go to the output displaying the distribution of perceived elapsed 
time, click on the red drop-down arrow next to the variable name, and select Test Mean. Enter 
the value from the null hypothesis as shown: 
 

 
 
JMP returns the following: 
 

 
 
Step 3: Write a conclusion in the context of the problem  
 
There is evidence that the mean perceived elapsed time for smokers suffering from nicotine withdrawal 
was greater than the actual 45 seconds that had elapsed.   
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Checking the Normality Assumption: 
 
For the t-test to be valid, at least one of the following conditions must be met: 
 
 Either the sample size is sufficiently large (greater than 30 or so), or 
 The distribution of the observed data is approximately normal (which would indicate 

that the population is normally distributed so that the Central Limit Theorem would 
apply even with a small sample size) 

 
For Example 5.1, we have a sample size of 20 subjects, which is not sufficiently large.  So we 
must check whether the data seem to come from a normal distribution.  The histogram seems to 
indicate that this is a reasonable assumption: 
 

 
 
We can also use JMP to create a normal quantile plot.  To do this, select this option from the red 
drop-down arrow next to the variable name. 
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Example 5.3:  For the data given in Example 5.1, we found evidence that the mean perceived 
elapsed was in fact greater than the actual 45 seconds that had elapsed.   This study alone, 
however, doesn’t really prove that the nicotine withdrawal was what impaired one’s perception 
of time.  Why not? 
 
 
 
 
Suppose that the researchers also studied 20 subjects who were smokers that did NOT abstain 
from smoking prior to the data collection (so, they were not suffering from nicotine 
withdrawal).  Data on their perceived elapsed times are given in the file Nicotine2.JMP. 
 

 
 
Research Question:  Is there evidence the mean perceived elapsed time for all smokers not 
suffering from nicotine withdrawal is significantly greater than the actual 45 seconds?  
 
Carry out the formal t-test to address this research question. 
 
Step 1: Set up the null and alternative hypotheses 
 
Ho: 
 
Ha: 
 
 
Step 2: Find the t-statistic and the p-value 

 

n
s

μx
t

−
= = 
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Finding the p-value: 
 

Original Scale of Data on the x-axis Transformed to t-scores on the x-axis (t-distribution) 

  
 
 

 
 
Step 3: Write a conclusion in the context of the problem 
 
There is not enough evidence to conclude that the mean perceived elapsed time for all smokers not 
suffering from nicotine withdrawal is significantly greater than the actual 45 seconds. 
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Checking the Normality Assumption: 
 
For the t-test to be valid, at least one of the following conditions must be met: 
 
 Either the sample size is sufficiently large (greater than 30 or so), or 
 The distribution of the observed data is approximately normal (which would indicate 

that the population is normally distributed so that the Central Limit Theorem would 
apply even with a small sample size) 
 

Once again, since the sample size is fairly small, we must check to see if the data are 
approximately normal: 
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NONPARAMETRIC TESTS: THE WILCOXON SIGNED RANK TEST 
 
When problems with normality in the data are present, there exists an alternative to the 
standard t-test:  the Wilcoxon Signed Rank test.  This procedure does not require that the data 
be normally distributed; however, THE DATA SHOULD BE SYMMETRIC IN ORDER FOR 
THIS PROCEDURE TO BE APPROPRIATE. 
 
Technically, this tests whether the median differs from some hypothesized value.  To carry out 
this nonparametric test in JMP, choose this option when you select Test Mean: 
 

 
 
JMP returns the following output: 
 

 
 
 
 
 



STAT 110:  Chapter 5 – Inferential Methods for a Single Numerical Variable 
Fall 2017 
 

 

158 
 
 

CONFIDENCE INTERVAL FOR A SINGLE POPULATION MEAN 
 
In Example 5.1, we found evidence that the mean perceived elapsed time for smokers suffering 
from nicotine withdrawal significantly differed from the actual 45 seconds of time that had 
elapsed.  Our next question is obvious:  HOW MUCH does it differ?  To answer this question, 
we must construct a confidence interval. 
 
Recall our discussion of confidence intervals from earlier in the semester: 

 
This procedure does NOT require any hypotheses concerning our population parameter of 
interest (the mean, in this case).  We will use both our sample data (in particular, the observed 
mean) and what we know about the distribution of sample means to obtain a range of likely 
values for our population mean.   

 
Comments:   
 

1. A confidence interval allows us to estimate the population parameter of interest 
(recall that the hypothesis test does NOT allow us to do this).  Therefore, when 
available, a confidence interval should always accompany the hypothesis test. 

 
2. The confidence interval does not require any hypothesized value for the population 

parameter. Instead, we center the confidence interval on the sample mean. Consider 
the following example. 

 
  
Example 5.4:  Our goal is to construct a 95% confidence interval for the mean perceived elapsed 

time for smokers suffering from nicotine withdrawal.  To do this, we will center our 
distribution of sample means on the observed mean.  Then, we will find the lower and 
upper endpoints that separate the middle 95% of the distribution from the rest (since we are 
constructing a 95% confidence interval). 
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The formula for calculating the endpoints of this confidence interval is given as follows:  
 

( )nsquantiletx −±  
 
The appropriate t-quantile can be found using JMP.  To find this value, you need the following 
information: 
 
 confidence level = 
 df = 

 
Open a new JMP data table and choose Probability > t Quantile from the Formula editor.  Enter 
the following: 
 

 
 
For this example, JMP returns the following t-quantile: 
 

 
 
Also, recall from Example 5.1 that the mean and standard deviation are as follows: 
 

 
Use this information to find the endpoints of the confidence interval: 
 
Lower endpoint: ( )nsquantiletx −−  = 
 
Upper endpoint: ( )nsquantiletx −+  = 
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Note that JMP automatically provides the endpoints of the 95% confidence interval for this 
mean when you analyze the distribution of the variable of interest. 
 

 
Questions: 
 

1. Interpret the meaning of this interval. What does this interval tell us about the true mean 
perceived elapsed time for all smokers that are suffering from nicotine withdrawal? 

 
 
 
 
 

2. Does this interval agree with what you learned from the hypothesis test? Explain. 
 
 
 
 
 

3. How would your calculations change if you wanted to obtain a 90% confidence interval, 
instead?   
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More on the Interpretation of Confidence Intervals 
 
The 95% refers to the process of constructing the confidence interval.  This means that if we 
were to take many samples of size 20 from the population, constructing a confidence interval 
each time, we would expect 95% of them to capture the true population mean.  Consider the 
following example: 
 
Example 5.5:  Our goal is to take samples from a population in order to estimate the true 
population mean.  Shown below are 10 random samples of size n = 5.  Construct a confidence 
interval for each of the samples. 
 

Sample ID Data from Sample Sample Statistics 90% Confidence Interval 
 
 

1 

12.49983 
11.4342 

8.210933 
7.373925 
8.776002 

 
Mean            9.65898 
Std Dev         2.19771 
 

 

 
 

2 

5.655407 
8.903349 
12.98215 
10.22548 
6.172528 

 
Mean            8.78778 
Std Dev         3.01349 
 

 

 
 

3 

8.181802 
12.08606 
6.176875 
5.556382 
5.822172 

 
Mean            7.56466 
Std Dev         2.73035 
 

 

 
 

4 
 

 

13.19405 
5.122735 
2.469639 
7.373925 
6.401793 

 
Mean            6.91243 
Std Dev         3.96465 
 

 

 
 

5 

9.293009 
10.52984 
7.260893 
10.50763 
7.431728 

 
Mean            9.00462 
Std Dev        1.59555 
 

 

 
 

6 

9.303573 
2.354969 
8.811873 
17.06401 
10.45554 

 

 
 Mean             9.59799 
 Std Dev          5.23552 
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Sample ID Data from Sample Sample Statistics 90% Confidence Interval 
 
 

7 

10.91127 
8.023941 
8.432168 
14.17466 
8.603912 

 
 Mean             10.02919 
 Std Dev           2.57711 
 

 

 
 

8 

11.53353 
5.782364 
11.44628 
10.61424 
-1.68752 

 
Mean              7.53778 
Std Dev           5.67659 

 

 
 

9 

8.197059 
6.193274 
9.114461 
6.290799 
9.661013 

 
Mean               7.89132 
Std Dev            1.59424 

 

 
 

10 

6.53196 
12.08221 
6.81856 

13.46314 
9.183324 

 
Mean                9.61584 
Std Dev            3.09866 
 

 

 
A graphical representation of the intervals is presented below: 
 

 
Questions: 
 

1. Why are some of the 90% confidence intervals wider than others? 
 
 
 

2. In truth, these 10 random samples were generated from a population with a mean of 10.  
How many of the confidence intervals captured this true mean?  What does it mean to 
say that we are 90% confident? 


