DSCI 325: Handout 16 — Introduction to PROC SQL
Spring 2017

SOL AND THE SOL PROCEDURE

SQL stands for Structured Query Language, which is a widely used language for retrieving,
joining, and updating data stored in databases. PROC SQL is SAS’s implementation of this
widely used language. We have already discussed the use of DATA steps for reading and/or
modifying data and the use of SAS PROCs to perform specific analyses or functions (e.g.,
sorting, printing, or writing reports). In this handout, we will discuss how PROC SQL can be

used as an alternative to these other procedures.

It may be helpful for you to understand the following terminology before discussing PROC SQL

in detail:
SQL Term SAS Term
Table SAS data set
Row Observation
Column Variable
USING PROC SQOL

As stated above, PROC SQL is SAS’s implementation of the Structured Query Language. This
procedure takes on the following general form:

PROC SQL;
sqgl-statement;
QUIT;

The sql-statement referenced above can be any SQL clause (e.g., ALTER, CREATE, DELETE,
DESCRIBE, DROP, INSERT, SELECT, UPDATE, or VALIDATE). Consider the next example
which implements the CREATE, INSERT, AND SELECT clauses.

Creating a Table from Scratch with PROC SQL

Suppose you want to create a simple SAS dataset containing two variables (Name and Age) and
three observations.

Adelyn 3
Ava 1
Isaac 2

We could either use a SAS DATA step or PROC SQL.:

DATA kids;

INPUT Name $ Age;
DATALINES;

Adelyn 3
Ava 1
Isaac 2

PROC PRINT data=kids;

TITLE 'The Kids';
RUN;

Output:
The Kids

Obs Name Age

1 Adelyn 3
2 Ava 1
3 lsaac 2

PROC SQL;
CREATE TABLE kids
(Name char, Age num);
INSERT INTO kids
VALUES ('Adelyn', 3)
VALUES ('Ava', 1)
VALUES ('Isaac', 2);

TITLE 'The Kids';

SELECT *
FROM kids;
QUIT;
Qutput:
The Kids
Name | Age
Adelyn 3
Ava 1
lsaac 2

Creating a Table from an Existing Data Set

The following statements can be used to read in the CarAccidents data set (which already exists
in my permanent library) and to save the results to a data set named CarAccidents2. The code on
the left shows how this is accomplished with the DATA step, while the code on the right shows
how this is done with PROC SQL.

DATA CarAccidents?2;

PROC SQL;
SET Hooks.CarAccidents; CREATE TABLE CarAccidents2 AS
PROC PRINT DATA = CarAccidents2; SELECT *
RUN; FROM Hooks.CarAccidents;
QUIT;

The first five observations are shown below:

Obs ID Gender Seat Belt Age Group Cell Phone_Involved Cell Phone_Usage
Female Yes 16-18 No None
Female Yes Over 30 No None
Male No 16-18 Yes Text
Female Yes 18-30 Yes Talk

B e W N -
(LR SR CR N

Female Yes 18-30 No None

Note that the above PROC SQL statements do not print any results to the Results Viewer
window. Modity the code below to print the data set.

PROC SQL;
CREATE Table CarAccidents2 AS
SELECT *

FROM Hooks.CarAccidents;

QUIT;

Keeping only Certain Columns of a Table

Next, suppose you wanted to include only the columns for Gender and Seat_Belt in the
CarAccidents2 data set. This could be accomplished in either of the following ways:

DATA CarAccidents2;

SET Hooks.CarAccidents

(keep = Gender Seat Belt);
PROC PRINT DATA = CariccidentsZ;
RUN;

PROC SQL;
CREATE Table CarAccidents2 AS
SELECT Gender, Seat Belt

FROM Hooks.CarAccidents;
QUIT;

“Printing” Results With PROC SQOL

The following example contrasts the PROC PRINT step with PROC SQL for printing data

tables.

PROC PRINT DATA = Hooks.CarAccidents
LABEL;

LABEL Seat Belt = Seat Belt Use;
LABEL Cell Phone Involved = Cell
Phone Involved?;

VAR Gender Seat Belt

Cell Phone Involved;

RUN;

Obs Gender Seat Belt Cell Phone

Use Involved?
1 Female Yes Mo
2 Female Yes Mo
3 | Male No Yes
4 | Female Yes Yes
5| Female Yes Mo

PROC SQL;

SELECT Gender,
Seat Belt LABEL = 'Seat Belt Use',
Cell Phone Involved LABEL = 'Cell

Phone Involved?'
FROM Hooks.CarAccidents;
QUIT;

Seat Belt Cell Phone

Gender | Use Involved?
Female | Yes Mo
Female Yes No

Male No Yes
Female Yes Yes
Female Yes Mo

Subsetting a Table

Notice that in all of the above programs involving PROC SQL, the SELECT statement must

contain both a

e SELECT clause, which lists the names of the column(s) of interest
e FROM clause, which lists the table in which the column(s) reside(s).

You can also include a WHERE statement to restrict the data that you retrieve. For example,

suppose that you wanted to read in only the females from the CarAccidents Table. You could
accomplish this with either the DATA step (as seen in earlier handouts) or with PROC SQL.:

Option 1 with DATA step:

DATA CarAccidents2;

SET Hooks.CarAccidents;

WHERE Gender = 'Female';
PROC PRINT DATA = CarAccidents2;
RUN;

Option 2 with DATA step:

DATA CarAccidents2;

SET Hooks.CarAccidents;

IF Gender = 'Female';
PROC PRINT DATA = CarAccidents?2;
RUN;

PROC SQL;
CREATE Table CarAccidents2 AS
SELECT *
FROM Hooks.CarAccidents
WHERE Gender = 'Female';
QUIT;

Comment: Note that although the results are the same for this example, there are some
differences in how the WHERE statement and the IF statement work in the DATA step:

e The subsetting IF can appear only in a DATA step, whereas the WHERE statement can
be used in DATA steps or other PROC steps.

e The WHERE statement is more efficient because it avoids reading unwanted rows.

e The WHERE statement can select rows only from existing SAS tables. The IF statement,

however, can be used to select rows from existing tables or from raw data files being

read in with INPUT statements.

Sorting Data with PROC SOQL

PROC SQL can be used to achieve the same result as PROC SORT. For example, consider the

following programs:

PROC SORT DATA = Hooks.CarAccidents;
BY Age Group Gender;

PROC PRINT DATA = Hooks.CarAccidents;

RUN;

PROC SQL;
SELECT *
FROM Hooks.CarAccidents
ORDER BY Age Group, Gender;
QUIT;

Creating New Columns in a Table

PROC SQL can also be used to calculate new columns by assigning an expression to an item

name. For example, consider the following programs:

DATA Grades2;

SET Hooks.Grades;

TotalExam =

SUM (Examl, Exam2, Exam3, Final) ;
RUN;

PROC SQL;
CREATE Table Grades2 AS
SELECT * ,
Examl + Exam?2 + Exam3 + Final AS
TotalExam
FROM Hooks.Grades;
QUIT;

Creating New Columns in a Table with Conditional Logic

The CASE expression in SQL assigns values to fields in the same way an IF-THEN-ELSE

statement works in a DATA step. Consider the following programs.

DATA Final;
SET Hooks.Grades (keep=Final);
IF Final >= 90 then FinalExamGrade = 'A';
ELSE IF Final >= 80 then FinalExamGrade='B';
ELSE IF Final >= 70 then FinalExamGrade='C';
ELSE IF Final >= 60 then FinalExamGrade='D';
ELSE FinalExamGrade = 'F';

RUN;

PROC SQL;
CREATE TABLE Final AS
SELECT Final, Case
WHEN Final >= 90 then 'A'
WHEN Final >=80 and Final < 90 then 'B'
WHEN Final >=70 and Final < 80 then 'C'
WHEN Final >=60 and Final < 70 then 'D'
ELSE 'F'
END AS FinalExamGrade
FROM Hooks.Grades;
QUIT;

Calculating Summary Statistics

Recall that by default the MEANS procedure will produce N (counts), the mean, the standard
deviation, the min, and the max for all numeric variables in a data set. We can use the VAR
statement in PROC MEANS to specify that these quantities be calculated for only certain
variables (e.g., for only the Final variable, as shown below). Note that these quantities can also

be calculated using PROC SQL.

PROC MEANS DATA = Hooks.Grades;
VAR Final;
RUN;

The MEANS Procedure

Analysis Variable : Final

N Mean Std Dev | Minimum | Maximum

134 691791045 | 20.3351064 01000000000

PROC SQL;

SELECT count (Final) as N,
avg (Final) as Mean,
std(Final) label 'Std Dev',
min (Final) as Min,
max (Final) as Max

FROM Hooks.Grades;

QUIT;
N| Mean 5td Dev Min Max

134 | 691731 20.33511 0 100

Question: Add the following to the above PROC SQL code. How does this change the output?

PROC SQL;

SELECT 'Final' as Variable,
count (Final) as N,
avg (Final) as Mean,
std(Final) label 'Std Dev',
min (Final) as Min,
max (Final) as Max

FROM Hooks.Grades;
QUIT;

Calculating Summary Statistics by Group

Recall that we have used the BY statement in PROC MEANS. We can obtain similar results
with the GROUP BY clause in PROC SQL. Consider the following programs and output.

BY Condition;

MEAN STD;
VAR FoliageDensity;
BY Condition;

RUN;

The MEANS Procedure
Condition=Excellent
Analysis Variable : FoliageDensity

N Mean Std Dev
34 82.3529412 14 2081546

Condition=Good

Analysis Variable : FoliageDensity
N Mean Std Dev
254 56.5748031 18.4337376

Condition=Poor

Analysis Variable : FoliageDensity
N Mean Std Dev
K| 32.0967742 13.3400521

PROC SORT DATA = Hooks.NYC Trees;

PROC MEANS DATA = Hooks.NYC Trees N

PROC SQL;

SELECT Condition,
count (FoliageDensity) AS N,
avg (FoliageDensity) AS Mean,
std(FoliageDensity) AS std
LABEL = 'Std Dev'

FROM Hooks.NYC Trees

GROUP BY Condition ;

QUIT;

Condition | N Mean 5Std Dev
Excellent = 34 8235294 14 20815
Good 284 | BBAT48 1843374
Poar 31 32.09677 13.34005

Selecting Unique Values of One or More Columns

You can use the DISTINCT clause to list only unique values of a variable. For example,

consider the following programming statements and their corresponding output:

PROC SQL; Condition
SELECT DISTINCT Condition Excellent
FROM Hooks.NYC Trees;
QuUIT; Good
Poar
PROC SQL;
SELECT DISTINCT Condition, Native Condition | Native
FROM Hooks.NYC Trees; Excellent | NO
QUIT;
Excellent YES
Good NO
Good YES
Poaor NO
Poaor YES

Compare the above results to the following:

PROC SQL;
SELECT Condition, Native, Count (*)
FROM Hooks.NYC Trees
GROUP BY Condition, Native;
QUIT;

Condition = Native
Excellent NO 20
Excellent YES 14

Good MO 205
Good YES 49
Poor NO 21

Poor YES 10

Concatenating Tables with PROC SQL

Recall the following example from Handout 12:

Emps

Obs Firstdame | Gender | HireYear

1| Matt M 2000

2 | Melia F 20Mm

3 | Josh W 201

4 | Corey i 2011
Emps2013

Obs Firstdame | Gender | HireYear
1 | Kristi F 2012
2 | Carrie F 2012

These data sets can be concatenated using either the DATA step (as was done earlier in the

semester) or using PROC SQL.:

DATA EmpsAll;
SET Emps Emps2013;
RUN;

PROC SQL ;

CREATE TABLE EmpsAll AS
SELECT * FROM Hooks.Emps
UNION

SELECT * FROM Hooks.Emps2013
QUIT;

The result is shown below:

EmpsAll

Obs | Firstdame Gender HireYear

1| Carrie F 2012
2 | Corey M 2011
3 Josh M 201
4 | Kristi F 2012
5 Matt M 2000
6 Melia F 2011

Merging Tables with PROC SQL

Once again, consider the following data sets from Handout 12:

EmpsAU

Obs | first | Gender | EmplD

1 Togar M 121150

2 Kylie F 121151

3 | Birin | M 121152
PhoneC

Obs | Phone EmplD

1 +61(2)5555-1793 121150
2 +61(2)5555-1849 | 121151
3 +61(2)5555-1348 121153

We can merge these two data sets using either the MERGE statement in a DATA step or by

using an INNER JOIN in PROC SQL:

DATA EmpsAUC;
MERGE Hooks.EmpsAU (IN = a)
Hooks.PhoneC (IN = b);
BY EmpID;
IF a =1 and b = 1;
RUN;

Option 1

PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT *

FROM Hooks.EmpsAU, Hooks.PhoneC
WHERE EmpsAU.EmpID=PhoneC.EmpID;
QUIT;

Option 2
PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT * FROM Hooks.EmpsAU
INNER JOIN Hooks.PhoneC

ON EmpsAU.EmpID = PhoneC.EmpID;
QUIT;

Output:

Obs first | Gender EmplD | Phone
1| Togar M 121150 +61(2)5555-1793
2 | Kylie F 121151 +61(2)5555-1849

10

The previous example showed what is known as an INNER JOIN (i.e., the final table contains

only the rows that match in both of the original tables). We can also use either the DATA step
or PROC SQL to accomplish a FULL OUTER JOIN:

DATA EmpsAUC;
MERGE Hooks.EmpsAU Hooks.PhoneC;

PROC SQL;
CREATE TABLE EmpsAUC AS

BY EmpID; SELECT * FROM Hooks.EmpsAU
RUN; FULL OUTER JOIN Hooks.PhoneC
ON EmpsAU.EmpID = PhoneC.EmpID;
QUIT;
Output:
Obs | first | Gender | EmplD | Phone
1 Togar M 121150 | +61({2)5555-1793
2 Kylie F 121151 | +61(2)5555-1549
3 Birn M 121152
4 121153 | +61(2)5555-1348

Note that this also works for a one-to-many merge. Recall the following example.

EmpsAU

Obs | First
1| Togar
2| Kylie
3 | Birin

PhoneHW

Obs | EmplD

1121150
121150
121151
121151
121152
121152

L= IS T~ P

Gender | EmplD

M
F
M

Type
Home
Work
Home
Work
Home

Work

121150
121151
121152

Phone

+61(2)5555-1793
1(2)6656-1794
1(2)5555-1849

+6
+6
+61(2)5555-1850
+6

1(2)5555-1665
+61(2)5555-1666

)
)
)
)

11

Consider the following programming statements.

DATA EmpsAUHW;

MERGE EmpsAU PhoneHW;
BY EmpID;

RUN;

PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT * FROM Hooks.EmpsAU

FULL OUTER JOIN Hooks.PhoneHW
ON EmpsAU.EmpID = PhoneHW.EmpID;
QUIT;

Both produce the following output:

Obs | First | Gender | EmplD
1| Togar M 121150
2 | Togar M 121150
3| Kylie F 121151
4 | Kylie F 121151
5| Birin | M 121152
6 | Birin | M 121152

Type
Home
Waork
Home
Wark
Home

Work

Phone

2)5555-1793
2)5555-1794
2)5555-1849
2)5555-1850
2)5555-1665
2)5555-1666

+61
+61

| -

+61

—

+61
+61

| -

+61

—

12

Using PROC SQL for Subqueries
Suppose the following three data sets exist in a permanent SAS library.

e MajorCurrSat
e GraduateSucc
e StudentInfo

Consider the following code, which uses a subquery.

PROC SQL;
SELECT MCS Semester, Avg(MCS Ql), Avg(MCS 0Q2), Avg(MCS Q3)
FROM Hooks.MajorCurrSat
WHERE Student_ID in
(select Student ID from Hooks.GraduateSucc WHERE
GS_Employed='Yes')
GROUP BY MCS Semester;
RUN; -

Tasks:

1. Run the above code and verify the following result:

MCS Semestar
20025 | 2.954545 3181818 3.227273
20035 3.088289 | 2.822222 3.022222
20045 309375 2052083 3115789
20055 | 3 090908 3 136354 . 3 245455
20065 | 3232143 3 142857 325
20075 | 2317757 324299 328972
20085 | 3433333 3244442 33
20025 3132075 3.113208 3.169311

2. How would you modify the code in order to get column headers to appear?

3. Run the code without the subquery, which is highlighted in yellow. You should get the
following result. What is the difference between this result and that obtained in Task 1?

MCS_Semester
20025 28 316 32
20035 3 2878788 3 060605
20045 305042 3092437 3110763
20065 3020973 3118881, 320973
20065 | 323741 3172662 | 3294964
20075 J 280 3224 328
20085 3399305 3:254237 | 3.305085
20095 3185714 3142857 | 3 242057

13

Finally, note that we could also use a subquery to create a subset and put it into its own table.

This is shown in the next example.

PROC SQL;
CREATE TABLE Hooks.MajorCurrSatYes
LIKE Hooks.MajorCurrSat;

DESCRIBE table Hooks.MajorCurrSatYes;

QUIT;

PROC SQL;
TITLE 'Inserting Rows into a Table';
INSERT into Hooks.MajorCurrSatYes
SELECT *
FROM Hooks.MajorCurrSat
WHERE Student ID in
(select Student ID from Hooks.GraduateSucc WHERE
GS_Employed='Yes');
QUIT;

Some Practice Problems:

1. Note that we could use PROC MEANS as shown below to compute the average score for
Questions 1, 2, and 3 from the MajorCurr Sat survey by Semester. Write a PROC SQL
program that also accomplishes this task.

PROC SORT DATA=Hooks.MajorCurrSat OUT=Hooks.MajorCurrSat2;
BY MCS Semester;
RUN;

PROC MEANS DATA=Hooks.MajorCurrSat2;

BY MCS Semester;

VAR MCS Q1 MCS Q2 MCS 0Q3;

OUTPUT OUT=Mean Output

MEAN (MCS Q1 MCS Q2 MCS Q3) = AvgMCS Q1 AvgMCS Q2 AvgMCS Q3;
RUN;

PROC PRINT DATA=Mean Output;
VAR MCS Semester AvgMCS Q1 AvgMCS Q2 AvgMCS Q3;
RUN;

2. Note that PROC FREQ could be used to analyze the distribution of

GS_EmploymentRelated, as shown below.

PROC FREQ DATA=Hooks.GraduateSucc;
TABLE GS EmploymentRelated;

RUN;
Cumulative | Cumulative
GS_EmploymentRelated | Frequency Percent Frequency Percent
Related 471 7548 471 7548
Somewhat Related T4 11.86 545 87.34
Unrelated 79 12.66 624 100.00

Write a PROC SQL program that calculates the frequency (i.e., count) of each category of
GS_EmploymentRelated.

15

