
1

DSCI 325: Handout 16 – Introduction to PROC SQL
Spring 2017

SQL AND THE SQL PROCEDURE

SQL stands for Structured Query Language, which is a widely used language for retrieving,

joining, and updating data stored in databases. PROC SQL is SAS’s implementation of this

widely used language. We have already discussed the use of DATA steps for reading and/or

modifying data and the use of SAS PROCs to perform specific analyses or functions (e.g.,

sorting, printing, or writing reports). In this handout, we will discuss how PROC SQL can be

used as an alternative to these other procedures.

It may be helpful for you to understand the following terminology before discussing PROC SQL

in detail:

SQL Term SAS Term

Table SAS data set

Row Observation

Column Variable

USING PROC SQL

As stated above, PROC SQL is SAS’s implementation of the Structured Query Language. This

procedure takes on the following general form:

PROC SQL;

 sql-statement;

QUIT;

 The sql-statement referenced above can be any SQL clause (e.g., ALTER, CREATE, DELETE,

DESCRIBE, DROP, INSERT, SELECT, UPDATE, or VALIDATE). Consider the next example

which implements the CREATE, INSERT, AND SELECT clauses.

Creating a Table from Scratch with PROC SQL

Suppose you want to create a simple SAS dataset containing two variables (Name and Age) and

three observations.

Adelyn 3

Ava 1

Isaac 2

2

We could either use a SAS DATA step or PROC SQL:

DATA kids;

INPUT Name $ Age;

DATALINES;

Adelyn 3

Ava 1

Isaac 2

;

PROC PRINT data=kids;

TITLE 'The Kids';

RUN;

Output:

PROC SQL;

 CREATE TABLE kids

 (Name char, Age num);

 INSERT INTO kids

 VALUES ('Adelyn', 3)

 VALUES ('Ava', 1)

 VALUES ('Isaac', 2);

 TITLE 'The Kids';

 SELECT *

 FROM kids;

QUIT;

Output:

Creating a Table from an Existing Data Set

The following statements can be used to read in the CarAccidents data set (which already exists

in my permanent library) and to save the results to a data set named CarAccidents2. The code on

the left shows how this is accomplished with the DATA step, while the code on the right shows

how this is done with PROC SQL.

DATA CarAccidents2;

 SET Hooks.CarAccidents;

PROC PRINT DATA = CarAccidents2;

RUN;

The first five observations are shown below:

PROC SQL;

CREATE TABLE CarAccidents2 AS

SELECT *

 FROM Hooks.CarAccidents;

QUIT;

3

Note that the above PROC SQL statements do not print any results to the Results Viewer

window. Modify the code below to print the data set.

PROC SQL;

CREATE Table CarAccidents2 AS

SELECT *

 FROM Hooks.CarAccidents;

QUIT;

Keeping only Certain Columns of a Table

Next, suppose you wanted to include only the columns for Gender and Seat_Belt in the

CarAccidents2 data set. This could be accomplished in either of the following ways:

DATA CarAccidents2;

 SET Hooks.CarAccidents

 (keep = Gender Seat_Belt);

PROC PRINT DATA = CarAccidents2;

RUN;

PROC SQL;

CREATE Table CarAccidents2 AS

SELECT Gender, Seat_Belt

 FROM Hooks.CarAccidents;

QUIT;

“Printing” Results With PROC SQL

The following example contrasts the PROC PRINT step with PROC SQL for printing data

tables.

PROC PRINT DATA = Hooks.CarAccidents

LABEL;

LABEL Seat_Belt = Seat Belt Use;

LABEL Cell_Phone_Involved = Cell

Phone Involved?;

VAR Gender Seat_Belt

Cell_Phone_Involved;

RUN;

PROC SQL;

SELECT Gender,

 Seat_Belt LABEL = 'Seat Belt Use',

 Cell_Phone_Involved LABEL = 'Cell

 Phone Involved?'

FROM Hooks.CarAccidents;

QUIT;

4

Subsetting a Table

Notice that in all of the above programs involving PROC SQL, the SELECT statement must

contain both a

 SELECT clause, which lists the names of the column(s) of interest

 FROM clause, which lists the table in which the column(s) reside(s).

You can also include a WHERE statement to restrict the data that you retrieve. For example,

suppose that you wanted to read in only the females from the CarAccidents Table. You could

accomplish this with either the DATA step (as seen in earlier handouts) or with PROC SQL:

Option 1 with DATA step:

DATA CarAccidents2;

 SET Hooks.CarAccidents;

 WHERE Gender = 'Female';

PROC PRINT DATA = CarAccidents2;

RUN;

PROC SQL;

CREATE Table CarAccidents2 AS

SELECT *

 FROM Hooks.CarAccidents

 WHERE Gender = 'Female';

QUIT;

Option 2 with DATA step:

DATA CarAccidents2;

 SET Hooks.CarAccidents;

 IF Gender = 'Female';

PROC PRINT DATA = CarAccidents2;

RUN;

Comment: Note that although the results are the same for this example, there are some

differences in how the WHERE statement and the IF statement work in the DATA step:

 The subsetting IF can appear only in a DATA step, whereas the WHERE statement can

be used in DATA steps or other PROC steps.

 The WHERE statement is more efficient because it avoids reading unwanted rows.

 The WHERE statement can select rows only from existing SAS tables. The IF statement,

however, can be used to select rows from existing tables or from raw data files being

read in with INPUT statements.

5

Sorting Data with PROC SQL

PROC SQL can be used to achieve the same result as PROC SORT. For example, consider the

following programs:

PROC SORT DATA = Hooks.CarAccidents;

 BY Age_Group Gender;

PROC PRINT DATA = Hooks.CarAccidents;

RUN;

PROC SQL;

 SELECT *

 FROM Hooks.CarAccidents

 ORDER BY Age_Group, Gender;

QUIT;

Creating New Columns in a Table

PROC SQL can also be used to calculate new columns by assigning an expression to an item

name. For example, consider the following programs:

DATA Grades2;

 SET Hooks.Grades;

 TotalExam =

 SUM(Exam1,Exam2,Exam3,Final);

RUN;

PROC SQL;

CREATE Table Grades2 AS

 SELECT * ,

 Exam1 + Exam2 + Exam3 + Final AS

 TotalExam

 FROM Hooks.Grades;

QUIT;

Creating New Columns in a Table with Conditional Logic

The CASE expression in SQL assigns values to fields in the same way an IF-THEN-ELSE

statement works in a DATA step. Consider the following programs.

DATA Final;

 SET Hooks.Grades (keep=Final);

 IF Final >= 90 then FinalExamGrade = 'A';

 ELSE IF Final >= 80 then FinalExamGrade='B';

 ELSE IF Final >= 70 then FinalExamGrade='C';

 ELSE IF Final >= 60 then FinalExamGrade='D';

 ELSE FinalExamGrade = 'F';

RUN;

PROC SQL;

 CREATE TABLE Final AS

 SELECT Final, Case

 WHEN Final >= 90 then 'A'

 WHEN Final >=80 and Final < 90 then 'B'

 WHEN Final >=70 and Final < 80 then 'C'

 WHEN Final >=60 and Final < 70 then 'D'

 ELSE 'F'

 END AS FinalExamGrade

FROM Hooks.Grades;

QUIT;

6

Calculating Summary Statistics

Recall that by default the MEANS procedure will produce N (counts), the mean, the standard

deviation, the min, and the max for all numeric variables in a data set. We can use the VAR

statement in PROC MEANS to specify that these quantities be calculated for only certain

variables (e.g., for only the Final variable, as shown below). Note that these quantities can also

be calculated using PROC SQL.

PROC MEANS DATA = Hooks.Grades;

 VAR Final;

RUN;

PROC SQL;

SELECT count(Final) as N,

 avg(Final) as Mean,

 std(Final) label 'Std Dev',

 min(Final) as Min,

 max(Final) as Max

FROM Hooks.Grades;

QUIT;

Question: Add the following to the above PROC SQL code. How does this change the output?

PROC SQL;

SELECT 'Final' as Variable,

 count(Final) as N,

 avg(Final) as Mean,

 std(Final) label 'Std Dev',

 min(Final) as Min,

 max(Final) as Max

FROM Hooks.Grades;

QUIT;

7

Calculating Summary Statistics by Group

Recall that we have used the BY statement in PROC MEANS. We can obtain similar results

with the GROUP BY clause in PROC SQL. Consider the following programs and output.

PROC SORT DATA = Hooks.NYC_Trees;

 BY Condition;

PROC MEANS DATA = Hooks.NYC_Trees N

 MEAN STD;

 VAR FoliageDensity;

 BY Condition;

RUN;

PROC SQL;

SELECT Condition,

 count(FoliageDensity) AS N,

 avg(FoliageDensity) AS Mean,

 std(FoliageDensity) AS std

 LABEL = 'Std Dev'

FROM Hooks.NYC_Trees

GROUP BY Condition ;

QUIT;

8

Selecting Unique Values of One or More Columns

You can use the DISTINCT clause to list only unique values of a variable. For example,

consider the following programming statements and their corresponding output:

PROC SQL;

SELECT DISTINCT Condition

 FROM Hooks.NYC_Trees;

QUIT;

PROC SQL;

SELECT DISTINCT Condition, Native

 FROM Hooks.NYC_Trees;

QUIT;

Compare the above results to the following:

PROC SQL;

SELECT Condition, Native, Count(*)

 FROM Hooks.NYC_Trees

 GROUP BY Condition, Native;

QUIT;

9

Concatenating Tables with PROC SQL

Recall the following example from Handout 12:

Emps

Emps2013

These data sets can be concatenated using either the DATA step (as was done earlier in the

semester) or using PROC SQL:

DATA EmpsAll;

SET Emps Emps2013;

RUN;

PROC SQL ;

CREATE TABLE EmpsAll AS

SELECT * FROM Hooks.Emps

UNION

SELECT * FROM Hooks.Emps2013

QUIT;

The result is shown below:

EmpsAll

10

Merging Tables with PROC SQL

Once again, consider the following data sets from Handout 12:

EmpsAU

PhoneC

We can merge these two data sets using either the MERGE statement in a DATA step or by

using an INNER JOIN in PROC SQL:

DATA EmpsAUC;

 MERGE Hooks.EmpsAU (IN = a)

 Hooks.PhoneC (IN = b);

 BY EmpID;

 IF a = 1 and b = 1;

RUN;

Option 1

PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT *

FROM Hooks.EmpsAU, Hooks.PhoneC

WHERE EmpsAU.EmpID=PhoneC.EmpID;

QUIT;

Option 2
PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT * FROM Hooks.EmpsAU

INNER JOIN Hooks.PhoneC

ON EmpsAU.EmpID = PhoneC.EmpID;

QUIT;

Output:

11

The previous example showed what is known as an INNER JOIN (i.e., the final table contains

only the rows that match in both of the original tables). We can also use either the DATA step

or PROC SQL to accomplish a FULL OUTER JOIN:

DATA EmpsAUC;

MERGE Hooks.EmpsAU Hooks.PhoneC;

BY EmpID;

RUN;

PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT * FROM Hooks.EmpsAU

FULL OUTER JOIN Hooks.PhoneC

ON EmpsAU.EmpID = PhoneC.EmpID;

QUIT;

Output:

Note that this also works for a one-to-many merge. Recall the following example.

EmpsAU

PhoneHW

12

Consider the following programming statements.

DATA EmpsAUHW;

MERGE EmpsAU PhoneHW;

BY EmpID;

RUN;

PROC SQL;

CREATE TABLE EmpsAUC AS

SELECT * FROM Hooks.EmpsAU

FULL OUTER JOIN Hooks.PhoneHW

ON EmpsAU.EmpID = PhoneHW.EmpID;

QUIT;

Both produce the following output:

13

Using PROC SQL for Subqueries

Suppose the following three data sets exist in a permanent SAS library.

 MajorCurrSat

 GraduateSucc

 StudentInfo

Consider the following code, which uses a subquery.

PROC SQL;

 SELECT MCS_Semester, Avg(MCS_Q1), Avg(MCS_Q2), Avg(MCS_Q3)

 FROM Hooks.MajorCurrSat

 WHERE Student_ID in

 (select Student_ID from Hooks.GraduateSucc WHERE

 GS_Employed='Yes')

 GROUP BY MCS_Semester;

RUN;

Tasks:

1. Run the above code and verify the following result:

2. How would you modify the code in order to get column headers to appear?

3. Run the code without the subquery, which is highlighted in yellow. You should get the

following result. What is the difference between this result and that obtained in Task 1?

14

Finally, note that we could also use a subquery to create a subset and put it into its own table.

This is shown in the next example.

PROC SQL;

 CREATE TABLE Hooks.MajorCurrSatYes

 LIKE Hooks.MajorCurrSat;

 DESCRIBE table Hooks.MajorCurrSatYes;

QUIT;

PROC SQL;

 TITLE 'Inserting Rows into a Table';

 INSERT into Hooks.MajorCurrSatYes

 SELECT *

 FROM Hooks.MajorCurrSat

 WHERE Student_ID in

 (select Student_ID from Hooks.GraduateSucc WHERE

 GS_Employed='Yes');

QUIT;

15

Some Practice Problems:

1. Note that we could use PROC MEANS as shown below to compute the average score for

Questions 1, 2, and 3 from the MajorCurr Sat survey by Semester. Write a PROC SQL

program that also accomplishes this task.

PROC SORT DATA=Hooks.MajorCurrSat OUT=Hooks.MajorCurrSat2;

 BY MCS_Semester;

RUN;

PROC MEANS DATA=Hooks.MajorCurrSat2;

 BY MCS_Semester;

 VAR MCS_Q1 MCS_Q2 MCS_Q3;

 OUTPUT OUT=Mean_Output

 MEAN(MCS_Q1 MCS_Q2 MCS_Q3) = AvgMCS_Q1 AvgMCS_Q2 AvgMCS_Q3;

RUN;

PROC PRINT DATA=Mean_Output;

 VAR MCS_Semester AvgMCS_Q1 AvgMCS_Q2 AvgMCS_Q3;

RUN;

2. Note that PROC FREQ could be used to analyze the distribution of

GS_EmploymentRelated, as shown below.

PROC FREQ DATA=Hooks.GraduateSucc;

TABLE GS_EmploymentRelated;

RUN;

Write a PROC SQL program that calculates the frequency (i.e., count) of each category of

GS_EmploymentRelated.

