1. A European manufacturer of automobiles claims that their cars are preferred by the younger generation and would like to target university students in their next ad campaign. Suppose we test their claim with our own survey. Random samples of autos parked in the student lot and the staff lot at a large university classified the brands by country of origin, as seen in the following table.

	Student	Staff
American	107	105
European	33	12
Asian	55	47

Research Question: Are there differences in the national origins of cars driven by students and staff?

a. Use JMP to create a mosaic plot for these data, and describe the differences you see between student and staff preferences in this sample.

In our sample, the percentage of the staff that drives American cars (64%) is slightly higher than that of students (54.9%). Also, the percentage of the staff that drives European cars (7.3%) is slightly lower than that of students (16.9%).

b. Convert the research question into a null and alternative hypothesis.

 H_0 : There are no differences in the national origins of cars driven by students vs. staff H_0 : There are differences in the national origins of cars driven by students vs. staff

c. Calculate the expected counts "by hand" and then find the chi-square test statistic "by hand."

Observed counts:

	Country of origin									
	Count	American	Asian	European						
đ	staff	105	47	12	164					
5	student	107	55	33	195					
		212	102	45	359					

Overall, 195/359 = 54.3175% of the subjects are students. If the null hypothesis is true, we expect

- 54.3175% of the American cars to belong to students (.543175*212 = 115.15)
- 54.3175% of the Asian cars to belong to students (.543175*102 = 55.40)
- The rest of the expected counts can be obtained by either this same logic or by subtraction

Expected counts:

	Country of origin								
	Expected	American	Asian	European					
đ	staff	96.8468	46.5961	20.5571					
5	student	115.153	55.4039	24.4429					

Test Statistic =

d. Use JMP to verify the test statistic and to find p-value from these data.

⊿ Tests				
N	DF	-LogL	ike	R Square (U)
359	2	4.07881	40	0.0122
Test	Ch	niSquare	Pr	ob>ChiSq
Likelihood Ra	tio	8.158		0.0169*
Pearson		7.828		0.0200*

e. Write a conclusion in the context of the problem.
We have evidence that there are differences in the national origins of cars driven by students vs. staff (p-value = .02).

2. The following table shows the rank attained by male and female officers in the police department of a large U.S. city.

	Male	Female
Officer	21,900	4281
Detective	4058	806
Sergeant	3989	415
Lieutenant	1333	89
Captain	359	12
Higher ranks	218	10

Research Question: Do these data indicate that men and women are unequally represented at some levels of the department in this city?

a. Use JMP to create a mosaic plot for these data, and describe the differences you see between males and females in this sample.

In this sample, there are more female officers and detectives than male officers and detectives. For every other rank, there are slightly more males.

Contingency Table									
				R	lank				
	Count	officer	detective	sergeant	lieutenant	captain	higher		
_	Row %								
	female	4281	806	415	89	12	10	5613	
de		76.27	14.36	7.39	1.59	0.21	0.18		
- Ber	male	21900	4058	3989	1333	359	218	31857	
Ŭ		68.74	12.74	12.52	4.18	1.13	0.68		
		26181	4864	4404	1422	371	228	37470	

b. Convert the research question into a null and alternative hypothesis.

H₀: There is no association between gender and rank H₀: There is an association between gender and rank

c. Calculate the expected counts "by hand" and then find the test statistic "by hand."

Observed counts:

	Rank									
	Count	officer	detective	sergeant	lieutenant	captain	higher			
de	female	4281	806	415	89	12	10	5613		
<u>Be</u>	male	21900	4058	3989	1333	359	218	31857		
~		26181	4864	4404	1422	371	228	37470		

Overall, 5613/37470 = 14.98% of the subjects are female. If the null hypothesis is true, we therefore expect

- 14.98% of all officers to be female (.1498*26181 = 3921.91)
- 14.98% of all detectives to be female (.1498*4864 = 728.63)
- 14.98% of all sergeants to be female (.1498*4404 = 659.72), etc.

Expected counts:

	Rank								
	Expected	officer	detective	sergeant	lieutenant	captain	higher		
de	female	3921.91	728.626	659.718	213.015	55.5757	34.1544		
Ger	male	22259.1	4135.37	3744.28	1208.98	315.424	193.846		

Test Statistic =

 $\frac{(4281 - 3921.91)^2}{3921.91} + \frac{(806 - 728.626)^2}{728.626} + \frac{(415 - 659.718)^2}{659.718} + \dots + \frac{(218 - 193.846)^2}{193.846} = 300.3$

d. Use JMP to verify the test statistic and to find p-value from these data.

⊿ Tests									
N C)F	-LogLi	ike	RSquare (U)					
37470	5	177.625	28	0.0049					
Test	Cł	niSquare	Pre	ob>ChiSq					
Likelihood Ratio		355.251		<.0001*					
Pearson		300.307		<.0001*					

e. Write a conclusion in the context of the problem.We have evidence that there is a relationship between gender and rank. More males appear to be in higher ranking positions.