350 Organic Chemistry I
Exam \#1A, September 27, 2013

Winona State University
Professor T. Nalli

Name \qquad

General Instructions: Write your name the space above and on the provided Scan-tron form. Do not put your name anywhere else in this exam book.

Make sure that you read each question carefully and provide complete answers.
Time Limit = 55 min . Exams must be turned in immediately upon my call of time up.

Grading: Grading will be on the basis of a highest possible score of 100 points.
I. Multiple Choice - 2 points each, 40 points total
II. Structures \rightarrow Names - 3 points each, 12 points total
III. Names \rightarrow Structures - 3 points each, 12 points total
IV. Drawing Isomers - 18 points
V. Explaining Theory behind Relative Acidities - 18 points

Extra credit - 2 points

1. What is the formal charge on nitrogen in the structure at right?
A. +1
B. -1
C. 0
D. -2
E. +2
2. What is the hybridization of the carbon atoms in the structure at right?
A. $s p$
B. $s p^{3}$
C. $s p^{2}$
D. $s p^{1.5}$

3. Which of the following is the strongestacid?
A.

B.

C.

D.

4. Which of the following is the strongest base?
A. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{SH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{3}$
5. Which pair of reactants react with each other in an acid-base reaction whose equilibrium constant favors the products? (In other words, which of these is not "no reaction "?)
A.

B.

C.

D.

6. What is the order of the boiling points of the three compounds shown (from highest to lowest?
I.

II.

III.

A. $\mathrm{III}>\mathrm{II}>$ I
B. $\mathrm{III}>\mathrm{I}>$ II
C. II $>\mathrm{I}>$ III
D. $\mathrm{II}>$ III $>$ I
7. Which of the following is the most soluble in water?
A.

B.

C.

D.

8. Which of the following heptane isomers has the lowest boiling point?
A.

B.

C.

D.

9. Which of the choices to question \#9 releases the most heat when combusted?
10. Which of the choices to question \#9 exhibits the fewest peaks in its C-13 NMR spectrum?
11. How many resonances are theoretically present in the ${ }^{13} \mathrm{C}$ NMR spectrum of 1 -decene?
A. eight
B. five
C. six
D. ten
E. twelve
12. Which of the following compounds has exactly three peaks in its ${ }^{13} \mathrm{C}$ NMR spectrum?
A. methylcyclohexane
B. cyclopropane
C. cyclohexene
D. ethylcyclopentane
13. Which of these compounds gives a ${ }^{13} \mathrm{C}$ NMR signal at the lowest frequency?
A. cyclohexane
B. $\mathrm{CH}_{3} \mathrm{CH}_{3}$
C. $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$
D. benzene
14. Which of the indicated carbons gives the NMR signal with the highest frequency?
A. 1
B. 2
C. 3 .
D. 4.

15. What is the position of the ethyl and methyl groups in the most stable chair conformer of cis-1-ethyl-2-isopropylcyclohexane?
A. ethyl = equatorial, isopropyl = axial
B. ethyl = axial, isopropyl = equatorial
C. both groups are equatorial
D. both groups are axial

For questions 16-19 indicate which type(s) of strain is(are) significant in the molecule given.
Choose from the choices below.
A. torsional only
B. steric only C. angle only
D. both torsional and steric E. both torsional and angle
16. the gauche conformer of butane
17. cyclopropane
18. cyclohexane boat conformation
19. cyclopentane
20. Which of these isomers of dimethylcyclohexane is the most stable?
A. cis-1,2
B. trans-1,2
C. cis-1,3
D. trans-1,3

II Show the structure of each of the following.
a. cis-2-octene
b. 4-isobutylnonane
c. 2,3-dimethylbutane
(most stable conformation around C2-C3 bond)
d. cis-1-butyl-3-ethylcyclohexane (most stable conformation)

III. Name each of the following.

IV. Drawing Isomers

(a) There are six isomeric cycloalkanes with formula $\mathrm{C}_{5} \mathrm{H}_{10}$. Draw them. Be careful not to duplicate structures.
(b) There are three different bicyclohexanes. Draw them.

V. Explaining relative acidities.

For the six compounds in the table, explain in detail, using structural diagrams as appropriate, how the structures determine the relative acid strengths as indicated by the $\mathrm{p} K_{\mathrm{a}}$ values. In other words, explain why the compounds have the order of acidity that they do.

	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
$\mathrm{p} K_{\mathrm{a}}$	≈ 38	26	16.0	10.6	4.8	0.0

