Name_____

General Instructions: Write your name in the space provided above and on the provided Scantron form. *Do not put your name anywhere else in this exam book.*

Make sure that you read each question carefully and provide complete answers. Time limit is 55 min.

Grading: Grading will be on the basis of a highest possible score of 100 points.

- I. Multiple Choice 2 points each, 50 points total
- II. Draw Structures 4 points each, 12 points total
- III. Priority Rules 10 points
- IV. Reaction Products 7 points each, 28 points total

Extra credit sustainability initiative - 5 points

	KJ/MOL	KCAL/MOL		KJ/MOL	KCAL/MOL		KJ/MOL	KCAL/MOI
Bonds to H			H ₂ C=CH−CH ₃	385	92	(CH ₃) ₂ CH—F	444	106
Н—Н	435	104	НС≡С—СН₃	489	117	(CH ₃)₂CH—CI	335	80
H—CH ₃	435	104				(CH ₃) ₂ CH—Br	285	68
H—CH ₂ CH ₃	410	98	Bonds to methyl			(CH ₃) ₂ CH—I	222	53
H—CH(CH ₃) ₂	397	95	CH ₃ —H	435	104	(CH ₃) ₂ CH—OH	381	91
H—C(CH ₃) ₃	381	91	CH ₃ —F	456	109			
<u>/</u>	473	113	CH₃—Cl	351	84	ÇH₃		
H			CH ₃ —Br	293	70	H ₃ C-C-X		
			CH ₃ —I	234	56	CH ₃		
H	356	85	CH₃—OH	381	91	(CH) C H	381	91
						(CH ₃) ₃ C—H (CH ₃) ₃ C—F	444	106
	464	111	H			(CH ₃) ₃ C—Cl	331	79
н 📏			H₃C− <mark>C−X</mark>			(CH ₃) ₃ C—Br	272	65
H	364	87	H			(CH ₃) ₃ C—I	209	50
—————————————————————————————————————	569	136	CH ₃ CH ₂ —H	410	98	(CH ₃) ₃ C—OH	381	91
H—Cl	431	103	CH ₃ CH ₂ —F	448	107	(0.13/30 011		
H—Br	368	88	CH ₃ CH ₂ —CI	339	81	X—X bonds		
H—I	297	71	CH ₃ CH ₂ —Br	285	68	F—F	159	38
Н—ОН	498	119	CH ₃ CH ₂ —I	222	53	CI—CI	242	58
H—OCH ₂ CH ₃	435	104	CH ₃ CH ₂ —OH	381	91	Br—Br	192	46
						 	151	36
C—C bonds			CH ₃			но—он	213	51
CH ₃ —CH ₃	368	88	H₃C— <mark>Ċ—X</mark>					
CH ₃ CH ₂ —CH ₃	356	85	н					
(CH ₃) ₂ CH—CH ₃	351	84	(CH ₃) ₂ CH—H	397	95			

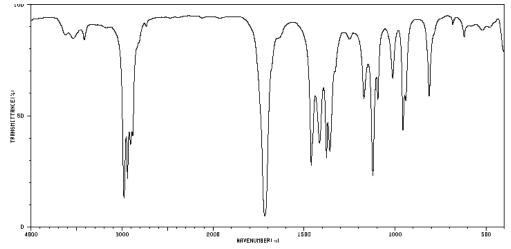
Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

I. Multiple Choice

- 1. A 50:50 mixture of a pair of enantiomers is called a mixture and is optically
 - A. racemic; active
- B. chiral; active
- C. racemic; inactive
- D. chiral; inactive

- 2. Which of the following compounds is(are) chiral?
 - I. 1-chloropentane
 - B. II only
- II. 2-chloropentane C. II and III
 - III. 3-chloropentane D. I and II
- 3. Which of the following compounds is chiral?

A. III only


- 4. How many chirality centers are present in the molecule shown at right?
 - A. two
- B. one
- C. three
- D. zero

- CO_2H
- How many total stereoisomers can exist for a compound with 4 chirality centers? 5.
- B. 16
- C. 8
- D. 4
- The $[\alpha]_D$ of the natural product derivative, β -butylene di(phenylurethane), is +20.0°. Assume a laboratory 6. synthesis of this compound gives a product with $[\alpha]_D = +12.0^\circ$. What is the ratio of the (+) to the (-) enantiomer in this synthetic sample?
 - A. 70:30
- B. 60:40
- C. 90:10
- D. 80:20
- 7. Which of these compounds can exist as a meso compound?
- A. 1,2-dichlorohexane B. 2,3-dichlorohexane C. 2,5-dichlorohexane D. 1,6-dichlorohexane
- How many signals are present in the ¹H NMR spectra of diethyl ether, CH₃CH₂OCH₂CH₃ and methyl propyl 8. ether, CH₃OCH₂CH₂CH₃, respectively?
 - A. 4, 4
- B. 2, 2
- C. 2, 4
- D. 2, 3
- Which compound gives the following ¹H NMR spectrum? 9.

- 10. The IR spectrum shown below is consistent with which of these functional group families?
 - A. alcohol
 - B. alkyne
 - C. alkene
 - D. ketone
 - E. amine

For questions 11-14 indicate the relationship between the two structures shown as:

A. identical

B.constitutional isomers

C. enantiomers

D. diastereomers

11.

 CH_2CH_3 12. Cl—H

$$CH_2CH_3$$
 CI
 H
 H
 CI
 CH_2CI

13.

$$CH_2CH_3$$
 $Cl \longrightarrow H$
 $Cl \longrightarrow H$
 CH_2Cl

CH₂CH₂Cl ĊH₃

14.

CH₂CH₃ Cl—H Cl—H CH₂Cl

CH₂Cl

CH₂CH₃ H—Cl -C1CH₂Cl

Which of the following is the *least* stable carbocation? 15.

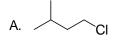
16. Which carbocation is expected to rearrange via a 1,2-hydride shift?

17. Which of the following substrates gives the *fastest* S_N2 reactions?

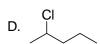
A.
$$\bowtie$$

D.

Which of the following is the weakest nucleophile? 18.


A. CH₃S⁻

B. CH₃O-


C. CH₃NH[−]

D. CH₃CH₂-

Which of the following substrates gives the fastest S_N2 reactions? 19.

C. OH D. CI

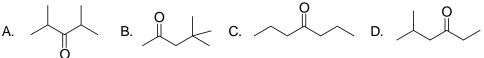
20. Use the data from the table on the front page of this exam to calculate ΔH for the reaction shown.

CH₃CH₂CH₃ + Br₂ → CH₃CHBrCH₃ + HBr

21. Which of these can exist as either an E or a Z isomer?

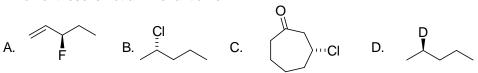
A. 2-methyl-2-pentene B. cyclopentene C. 3-methyl-1-pentene D. 3-methyl-2-pentene

C. +15 kcal/mol


D. -15 kcal/mol

22. What is the chemical shift of the proton of CHCl₃ on a 300 MHz NMR?

B. +25 kcal/mol


A. 7.26 ppm B. 0.9 ppm C. 77 ppm D. 0.0 ppm E. 1.55 ppm

Which of the following compounds gave the ¹H NMR spectrum summarized below? (a) 2.36 ppm, 4H, triplet (b) 1.59 ppm, 4H, multiplet (c) 0.92 ppm, 6H, triplet

24. Which of these is not an R enantiomer?

A. -25 kcal/mol

25. Which of these compounds shows only singlets in the ¹H NMR spectrum?

A. CI C. OH D. CI E. CI

II. Give the structure of each of the following.

1. dichloromethane

2. 2S-1,2-dibromobutane

3. Z-3-chloro-3-octene

III. Use the Cahn-Ingold-Prelog rules to assign the following ten substituents relative priorities. (Label each with a number from 1 to 10.) Draw out structures of each as necessary and show reasoning directly below them. $-CD_3 -CH_2CI -CH_3 -SH -CH(CH_3)_2 -CH=CH_2 -C_6H_5 -NHCOCH_3 -CN -CH_2(CH_2)_8CH_3$

IV. (a) Predict the mechanism (S_N1 or S_N2) and give the product of each of the following nucleophilic substitution reactions. In the cases where the product can exist as stereoisomers, show specifically the stereoisomer or stereoisomers actually formed.(b) Only one of these occurs by a stepwise mechanism. For full credit on the one that does, identify it and write out the full mechanism, showing each step separately and using curved arrows to show electron flow.