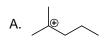
Name											

General Instructions: Write your name in the space provided above and on the provided Scan-tron form. *Do not put your name anywhere else in this exam book.*

Make sure that you read each question carefully and provide complete answers. Time limit is 55 min.

Grading: Grading will be on the basis of a highest possible score of 100 points.

- I. Multiple Choice 2 points each, 40 points total
- II. R /S Designations 1.5 points each, 7.5 points total
- III. Structures 1.5 points each, 7.5 points total
- III. Reaction Products 5 points each, 25 points total
- IV. Spectroscopy Problem 20 points

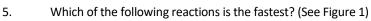

	KJ/MOL	KCAL/MOL		KJ/MOL	KCAL/MOL		KJ/MOL	KCAL/MO
Bonds to H			H ₂ C=CH−CH ₃	385	92	(CH ₃) ₂ CH—F	444	106
Н—Н	435	104	HC≡C—CH ₃	489	117	(CH ₃)₂CH—CI	335	80
H—CH ₃	435	104				(CH ₃) ₂ CH—Br	285	68
H—CH ₂ CH ₃	410	98	Bonds to methyl			(CH ₃) ₂ CH—I	222	53
H—CH(CH ₃) ₂	397	95	CH ₃ —H	435	104	(CH₃)₂CH—OH	381	91
H—C(CH ₃) ₃	381	91	CH ₃ —F	456	109			
H—————————————————————————————————————	473	113	CH₃—CI	351	84	ÇH₃		
			CH ₃ —Br	293	70	H ₃ C-C-X		
			CH ₃ —I	234	56	CH ₃		
	356	85	СН3—ОН	381	91	(CH ₃) ₃ C—H	381	91
			////			(CH ₃) ₃ C—F	444	106
н	464	111	H 			(CH ₃) ₃ C—Cl	331	79
	364	87	H ₃ C — C — X			(CH ₃) ₃ C—Br	272	65
н 30.		07	Н			(CH ₃) ₃ C—I	209	50
H—F	569	136	CH₃CH₂—H	410	98	(CH₃)₃C—OH	381	91
H—Cl	431	103	CH₃CH₂—F	448	107			
H—Br	368	88	CH ₃ CH ₂ —Cl	339	81	X—X bonds		
H—I	297	71	CH ₃ CH ₂ —Br	285	68	F—F	159	38
Н—ОН	498	119	CH₃CH₂—I	222	53	CI—CI	242	58
H—OCH ₂ CH ₃	435	104	CH₃CH₂—OH	381	91	Br—Br	192	46
			19404 27			—	151	36
C—C bonds			CH₃ I			но—он	213	51
CH ₃ —CH ₃	368	88	H ₃ C— <mark>C</mark> —X					
CH ₃ CH ₂ —CH ₃	356	85	Ĥ					
(CH ₃) ₂ CH—CH ₃	351	84	(CH ₃) ₂ CH—H	397	95			

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

I. Multiple Choice

I. Each of the following multiple choice questions has one and only one correct response. Mark the letter of the correct response to each question on the Scan-Tron form provided. A #2 pencil should be used. (Make sure to write your name on the Scan-Tron form.)

Use the following choices for questions 1-3.

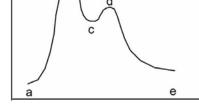

B. **

C. ••

D. \oplus

E. *

- 1. Which is the least stable carbocation?
- 2. Which is the most stable?
- 3. Which carbocation is expected to undergo a 1,2-hydride shift?
- 4. Which of these correctly describes the overall reaction $a \rightarrow e$? (See Figure 1)
 - A. non-concerted, exothermic
 - B. non-concerted, endothermic
 - C. concerted, exothermic
 - D. concerted, endothermic



B. c **→**e

C. c →a

D. e \rightarrow c

6. What points on the graph represent transition states? (See Figure 1)

- A. c only
- B. b and d
- C. b, c, and d
- D. c and e

Figure 1 - PE Diagram for Questions 4-6

7. Use the table of BDEs on the front page to predict the ΔH of the following hypothetical reaction.

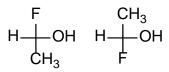
- A. +8 kcal/mol
- B. -8 kcal/mol
- C. +5 kcal/mol
- D. -5 kcal/mol
- 8. Morphine is a natural product isolated from opium poppies. It can be reacted with H_2SO_4 to form morphine sulfate which is used as an oral pain reliever. The $[\alpha]_D$ of pure morphine sulfate is -110°. If 10 morphine sulfate caplets are dissolved in 5.0 mL H_2O and the solution is measured on an automatic 1-dm polarimeter to give an observed rotation of α_{obs} = -22.0° what is the average mass (in mg) of the caplets?
 - A. 20
- B. 25
- C. 80
- D. 100
- E. 1500
- 9. The optical purity of a research compound was measured by polarimetry to be 50%. Which of these statements correctly describes the compound?
 - A. It is a mixture of enantiomers in a 4:1 ratio
 - B. It is a mixture of enantiomers in a 3:1 ratio
 - C. It is a mixture of diastereomers in a 4:1 ratio
 - D. It is a mixture of diastereomers in a 3:1 ratio.
 - E. It is a racemic mixture
- 10. Which of the following cycloalkanes is chiral?

D

C.

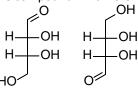
D.

F

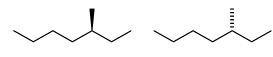

11.

13.

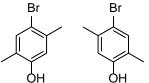
15.

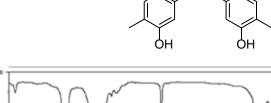


17.



- A. 1-Octene
- B. 2-Octene
- C. 1-Octyne
- D. 2-Octyne
- E. 1-Octanol


12.



14.

16.

18.

What are the expected peak multiplicities in the ¹H NMR spectrum of

C. t, q, m, t, d D. t, q, d, m, d A. q, t, t, m, s B. s, t, t, d, m

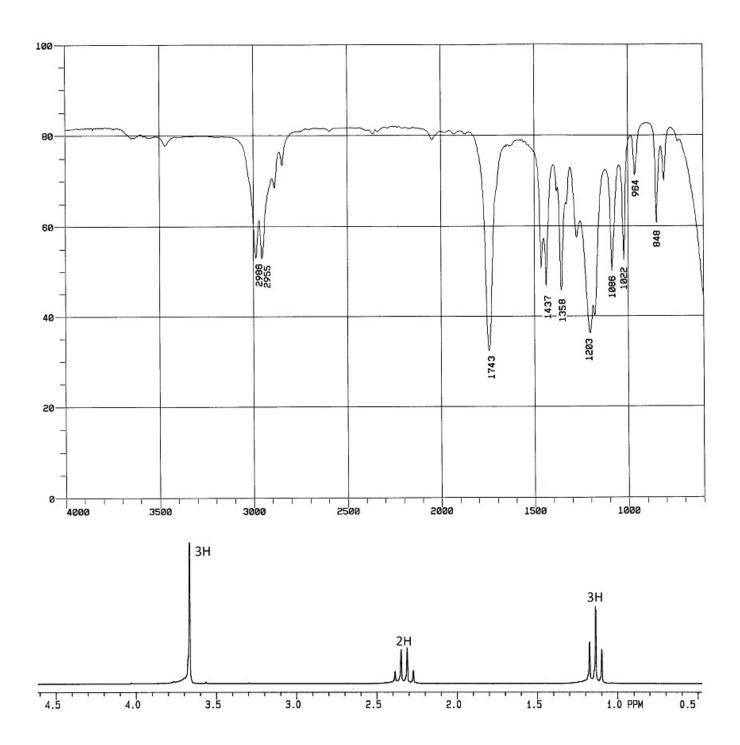
E. q, t, t, m, q

19.

What are the expected peak multiplicities in the ¹H NMR spectrum of A. q, t, t B. s, s, s C. t, m, t C. s, s, s E. d, d, q

20. Which of the following substrates gives the *fastest* S_N2 reactions?

II. (a) Label all chirality centers in morphine as R or S as appropriate. Show priorities of all groups around each chirality center.


(b) How many stereoisomers are theoretically possible form morphine?

III. Give the structure of each of the following:

TMS (S)-3-chloro-1-hexene DMSO *meso-*3,4-dimethylhexane TsCl

IV. Predict the product of each of the following nucleophilic substitution reactions. If no reaction is expected to occur then write N.R. and explain your reasoning.

V. A compound with molecular formula $C_4H_8O_2$ displays the following IR and 1H NMR spectra. Propose a structure for this compound. Explain your reasoning by labeling all key peaks in the spectra.

