EXPERIMENT 3

Comparing Buffered and Unbuffered Solutions

Relevant Textbook Reading

Smith, chapter 8

Materials Needed:

0.2 M acetic acid
$0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
0.2 M NaOH

Orange IV Indicator
toothpicks
0.2 M HCl
$0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$
Universal Indicator
Alizarin Yellow R Indicator
9 spot plates

Background

The pH of a solution is a measure of the number of $\mathrm{H}_{3} \mathrm{O}^{+}$(hydronium) ions in that solution. The pH is defined as $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$. The pH scale generally ranges from 0 to 14 . When the $\mathrm{pH}=7,\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $=\left[\mathrm{OH}^{-}\right]$and the solution is neutral (neither acidic or basic). When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the pH is less than 7 and the solution is acidic. When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$, the pH is greater than 7 and the solution is basic.

A buffer is a solution that resists changes in pH when strong acids or bases are added. Our body fluids require buffers so that a drastic change in ions does not cause a imbalance that would harmfully affect the functions of proteins, enzymes, and other species present. Changes in hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$ions and hydroxide $\left(\mathrm{OH}^{-}\right)$ions are specifically damaging to the delicate physiological makeup of our bodies. For example, if the pH of blood drops significantly below 7.2, (the physiological pH), hemoglobin will not bind oxygen.

A buffer system is a solution of a weak acid or base, combined with one of its salts. A weak acid or base ionizes to a much smaller extent than strong acids and bases. The ions exist in equilibrium with the molecular acid or base. For example, acetic acid is a weak acid and sodium acetate $\left(\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$ is a salt of the acid.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \quad \rightleftharpoons \quad \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}^{-}
$$

Acetic acid

acetate
The salt provides the acetate needed to neutralize any H^{+}added. The acetic acid will neutralize OH^{-} added. The pH is determined by the amount of hydronium ion present. If either solution is added, the amount of $\mathrm{H}+$ present in solution will change very little, and therefore the pH will retain nearly its original value.

$$
\mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq}) \quad \longrightarrow \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}
$$

added and consumed by the acetate ion

added and consumed by the acetic acid

Measuring pH

There are several ways pH can be monitored. The most inexpensive way is to use pH paper, which is a paper saturated with dyes that change color in response to a change in pH . Another way is to use a pH meter, which is an electronic device that generates a small voltage proportional to the hydronium ion content. Indicators used in this experiment are liquid indictors which are compounds that change color at one or more particular pH . A Universal indicator is a mixture of several indicators that result in color changes throughout a wide pH range. The corresponding relationship of colors and pH ranges is indicated in the table below.

$\mathbf{p H}$	Universal Indicator color	$\mathbf{p H}$	Universal Indicator color
4.0	Red	7.5	Dark green
5.0	Orange-red	8.0	Light green
5.5	Orange	8.5	Blue-green
6.0	Yellow-orange	9.0	blue
6.5	Yellow-green	9.5	Violet
7.0	Dark green-yellow	10.0	Red-violet

Other indicators used in this experiment include Orange IV ("O4") and Alizarin Yellow R ("AY)". These indicators are useful for monitoring the pH of highly acidic and highly basic solutions (see table below).

	Red	Orange	Yellow
Orange IV (O4)	$\mathrm{pH}<1.4$	$\mathrm{pH}=1.4-2.6$	$\mathrm{pH}>2.6$
Alizarin Yellow R (AY)	$\mathrm{pH}>12$	$\mathrm{pH}=10-12$	$\mathrm{pH}<10$

In this experiment, you will observe the effects of the addition of $\mathrm{HCl}(\mathrm{aq})$ and $\mathrm{NaOH}(\mathrm{aq})$ to several different solutions. The number of drops needed for a pH (color) change will be used to compare the resistance to pH change, or buffering capacity, of the various substances.

Procedure

Obtain nine spot plates and label each plate with a wax pencil as 1-9. Label each well on each plate as A, B, or C.
A. Pure Water

1. Place 20 drops of distilled water (using the correct pipet) into wells $1 A-C$ and 6 A . Add one drop of Universal Indicator to the water in 1A and 1B. Add one drop of Orange IV to 1C. Add one drop of Alizarin Yellow R to 6A. Mix the solutions with a clean toothpick and record the initial color of each.
2. Counting drops and mixing after each addition, add 0.2 M HCl dropwise to wells 1 A and 1 C until you see a color change. Record the final color and drop count for each.
3. Counting drops and mixing after each addition, add 0.2 M NaOH dropwise to wells 1 B and 6 A until you see a color change. Record the final color and drop count.

B. Aqueous Acetic Acid $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$

1. Add 10 drops of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ solution and 10 drops of distilled water to wells $2 \mathrm{~A}-\mathrm{C}$. Add one drop of Universal Indicator (UI) to 2A. Add one drop of Orange IV (O4) to 2B and add one drop of Alizarin Yellow R (AY) to 2C. Mix the solutions and record the initial color of each.
2. Counting drops and mixing after each addition, add 0.2 M NaOH dropwise to wells 2 A and 2 C until you see a color change. Record the color and drop count for each. Continue to add the

NaOH solution until no further color changes are observed making sure to note the colors and drop counts needed for each on your data sheet.
3. Counting drops and mixing after each addition, add 0.2 M HCl to well 2 B . Record the color and drop counts as before.

From here on it is understood that you will count the drops and mix thoroughly after each addition and observe and note the resulting color changes and drop counts.
C. Aqueous Sodium Acetate $\left(\mathrm{NaCH}_{3} \mathrm{CO}_{2}\right)$

1. Add 10 drops of $0.2 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2}$ solution and 10 drops of distilled water to wells $3 \mathrm{~A}-\mathrm{C}$ and 6 B . Add 1 drop UI to 3 A and 3 B . Add one drop O 4 to 3 C . Add one drop AY to 6 B . Mix thoroughly and record the initial color of each.
2. Add 0.2 M HCl to 3 A and 3 C .
3. Add 0.2 M NaOH to 3 B and 6 B .
D. Aqueous Sodium Dihydrogen Phosphate $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right)$
4. Add 10 drops of $0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution and 10 drops of distilled water to wells $4 \mathrm{~A}-\mathrm{C}$. Add one drop UI to 4A. Add one drop O 4 to 4B. Add one drop AY to 4C. Mix thoroughly and record the initial color of each.
5. Add 0.2 M HCl to 4 B .
6. Add 0.2 M NaOH to 4 A and 4 C .
E. Aqueous Sodium Hydrogen Phosphate $\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)$
7. Add 10 drops $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solutions and 10 drops of distilled water to wells $5 \mathrm{~A}-\mathrm{C}$ and 6 C . Add one drop UI to 5A and 5B. Add one drop O 4 to 5C. Add one drop AY to 6C. Mix thoroughly and record the initial color of each.
8. Add 0.2 M HCl to 5 A and 5 C .
9. Add 0.2 M NaOH to 5 B and 6 C .
F. Aqueous Acetic Acid/Sodium Acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{NaCH}_{3} \mathrm{CO}_{2}\right)$
10. Add 10 drops of $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ solution and 10 drops of $0.2 \mathrm{M} \mathrm{NaCH} \mathrm{CO}_{2}$ solution to wells $7 \mathrm{~A}-\mathrm{C}$. Add one drop UI to 7A. Add one drop O 4 to 7B. Add one drop AY to 7C. Thoroughly mix and record the initial color of each.
11. Add 0.2 M HCl to 7 B .
12. Add 0.2 M NaOH to 7 A and 7 C .
G. Aqueous $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$
13. Add 10 drops of $0.2 \mathrm{M} \mathrm{NaH} \mathrm{NO}_{4}$ solution and 10 drops of $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution to wells $8 \mathrm{~A}-\mathrm{C}$ and 9A. Add one drop UI to 8A and 8B. Add one drop 04 to 8 C . Add one drop AY to 9A. Thoroughly mix and record the initial color of each.
14. Add 0.2 M HCl to 8 A and 8 C .
15. Add 0.2 M NaOH to 8 B and 9 A .

Clean Up and Waste Disposal - Transfer all the solutions to the waste beaker provided. Thoroughly rinse the wells. Then rinse them with distilled water. Dry the wells with an absorbent towel.

EXPT 3. COMPARING BUFFERED AND UNBUFFERED SOLUTIONS

PRE-LABORATORY QUESTIONS

Names \qquad Section \qquad Date \qquad

1. Explain the following terms:
a. pH
b. buffer system
c. acid-base indicator
2. Using the table for $\mathrm{pH} /$ color correlation for Universal indicator and subsequent information, state what the solution color would be for each of the following solutions. (UI = universal indicator; $\mathrm{O} 4=$ orange IV)
a. $\mathrm{pH}=9$ using UI
b. $\mathrm{pH}=5$ using UI
c. $\mathrm{pH}=9$ using O 4
d. $\mathrm{pH}=5$ using O 4

EXPT 3. COMPARING BUFFERED AND UNBUFFERED SOLUTIONS

IN-LAB OBSERVATIONS/DATA

Names \qquad Section \qquad Date \qquad

Solution tested: $\mathrm{H}_{2} \mathrm{O}$

well number \rightarrow	1 A	1 B	1 C	6 A
indicator				
initial color				
solution added				
\# of drops				
final color				

Solution tested: $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$

well number \rightarrow	2A	2B	2C
indicator			
initial color			
solution added			
\# of drops/color			

Solution tested: $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$

well number \rightarrow	3A	3B	3C	6B
indicator				
initial color				
solution added				
\# drops/color				
\#drops/color				

Solution tested: $\mathrm{NaH}_{2} \mathrm{PO}_{4}$

well number \rightarrow	4A	4B	4C
indicator			
initial color			
solution added			
\# of drops/color			

Solution tested: $\mathrm{Na}_{2} \mathrm{HPO}_{4}$

well number \rightarrow	5 A	5B	5 C	6C
indicator				
initial color				
solution added				
\# drops/color				
\#drops/color				

Solution tested: $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{NaCH}_{3} \mathrm{CO}_{2}$

well number \rightarrow	7A	7B	7C
indicator			
initial color			
solution added			
\# of drops/color			

Solution tested: $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$

well number \rightarrow	8 A	8 B	8 C	9 A
indicator				
initial color				
solution added				
\# drops/color				
\#drops/color				

EXPT 3. COMPARING BUFFERED AND UNBUFFERED SOLUTIONS

REPORT SHEET

Names \qquad Section \qquad Date \qquad

Results Table

| Solution | initial pH
 \# of drops of HCl to
 decrease solution
 to $\mathrm{pH}<2.6$ | \# of drops of NaOH to
 increase solution
 to $\mathrm{pH}>11$ |
| :--- | :---: | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}$ | - | - |
| $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ | - | - |
| $\mathrm{NaCH}_{3} \mathrm{CO}_{2}$ | - | - |
| $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ | - | - |
| $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ | - | - |
| $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H} / \mathrm{NaCH}_{3} \mathrm{CO}_{2}-$ | - | - |
| $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ | - | - |

Questions

1. Which solutions fit the definition of a buffer by only slowly changing in pH when either strong acid or strong base was added? Use your results to defend your answer and then explain theoretically why these solutions meet the theoretical requirement for a buffer.
2. Show, with the appropriate chemical equations, how the acetic acid/sodium acetate buffer prevents each of the following:
a. a large decrease in pH when HCl is added
b. a large increase in pH when NaOH is added
3. Which solution has the higher pH ?
a. $0.2 \mathrm{M} \mathrm{NaCH} \mathrm{CO}_{2}$ or $0.2 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
b. 0.2 M NaOH or $0.2 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{CO}_{2}$
c. $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ or $0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$
4. Write the chemical equation for the reaction that occurred when you added HCl solution to $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ solution.
