CME 260 – Mechanics of Materials Exam #2 (02/09/2022)

Tech ID or Star ID: Grading

Do one of the two problems shown below (the second problem is on the back). Show your work (you will not receive any credit if all you have is a final answer, right or wrong).

- 1. A section of solid cylindrical rod (originally 1.5 inches long with a diameter of 0.5 inches) is made of 2014-T6 Aluminum. It is placed in a vice and a load of 800 lb is applied as shown. With the load applied, determine:
- (a) the change in the length of the rod
- (b) the new diameter of the rod

(a)
$$E_{long} = \frac{\sigma}{E} = \frac{\frac{-900 \, 16}{11} (0.6 \, \text{in})^2}{10.6 \times 10^6 \, \frac{16}{10^2}} = -3.844 \times 10^{-4} \, \frac{\text{in}}{\text{in}} (3.9 \, \text{k})$$

$$S_{long} = E_{long} L = (-3.944 \times 10^{-4} \, \frac{\text{in}}{\text{in}}) (1.5 \, \text{in})$$

$$= -5.766 \times 10^{-4} \, \text{in}$$

$$or (-5.77 \times 10^{-4} \, \text{in}) (2.9 \, \text{kr})$$

(b)
$$V = \frac{\epsilon_{lat}}{\epsilon_{long}} \longrightarrow \epsilon_{lat} = -2\epsilon_{long}$$

 $\epsilon_{lat} = -(0.36)(-3.844 \times 10^{-4} \frac{in}{in})$
 $\epsilon_{lat} = -(0.36) \times 10^{-4} \frac{in}{in} (2pt)$

$$d_{new} = d(1 + E_{1at})$$

$$= 0.5 in (1 + 1.345 \times 10^{-4} \frac{in}{ih})$$

$$= 0.50006725 in (2pt)$$

or
$$S_d = E_{1at} d$$

= $(1.345 \times 10^{-4} in)(0.5in)$
= $0.00006725 in (1pt)$
 $d_{new} = S_d + d$
= $0.50006725 in (1pt)$

- 2. A material, originally square, is deformed into the dashed position. Determine:
- (a) the average shear strain at corner A relative to the x, y axes.
- (b) the average normal strain that occurs along the diagonal BD.

(a)
$$89.7 \text{ deg} \left(\frac{\pi \text{ rad}}{180 \text{ deg}} \right) = 1.56556 \text{ rad} (2 \text{ pt})$$

$$V_A = \frac{\pi}{2} - 1.56556 \text{ (rad)}$$

$$= 0.005236 \text{ rad}$$
or 0.00524 rad

$$5.24 \times 10^{-3} \text{ rad}$$
 (3 ptr)

alternate (6) see Figure A', B', D'

A'B' = 15.24 mm cos (0.3°)

= 15.23979 mm

A'D' = 15.18 mm - AA'

= 15.18 mm - 15.24 mm sin (0.3°)

= 16.18 mm - 0.079796 mm

= 15.1002 mm

B'D' =
$$\sqrt{(15.23979 mm)^2 + (15.1002 mm)^2}$$

BD deform = 21.4538 mm (2 pk)

law of cosines:

$$(BD_{deform})^{2} = (15.24 \text{ mm})^{2} + (16.18 \text{ mm})^{2} - (2)(16.24 \text{ mm})(16.18 \text{ mm}) \cos(89.7^{\circ})$$

$$BD_{deform} = \sqrt{460.2674 \text{ mm}^{2}}$$

$$= 21.4938 \text{ mm} \quad (2 \text{ ptr})$$

$$\mathcal{E}_{BD} = \frac{21.4638 \text{ mm} - 21.2132 \text{ mm}}{21.2132 \text{ mm}}$$

$$= 1.1342 \times 10^{-2} \frac{\text{mm}}{\text{mm}}$$

$$or \sqrt{1.13 \times 10^{-2} \frac{\text{mm}}{\text{mm}}} \quad (2 \text{ ptr})$$