CME 260 - Mechanics of Materials
Exam \#4 (03/02/2022)
Tech ID or Star ID: \qquad
Do one of the two problems shown below (the second problem is on the back).
Show your work (you will not receive any credit if all you have is a final answer, right or wrong).

1. The motor shown below in the figure supplies (in a clockwise manner) 40 hp to the solid shaft as it rotates at 20 Hz . The 304 stainless steel shaft has a diameter of 1.5 inches and is supported on smooth bearings at A and B, allowing free rotation of the shaft. The gears C and D are fixed to the shaft and remove (in a counterclockwise manner) 25 hp and 15 hp , respectively. Determine the angle of twist of gear C with respect to gear D.

(5ptr)

$$
\begin{aligned}
& P=2 \text { nf } T \rightarrow T=\frac{P}{2 n f}
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{C / D}=\frac{T L}{T G} \\
& =\frac{(65.6516-\mathrm{ff})\left(\frac{12 \mathrm{if}}{\mathrm{fI}}\right)(8 \mathrm{in})}{\frac{\pi}{2}(0.75 \mathrm{in})^{4}\left(11 \times 10^{6} \frac{16}{\mathrm{~min}^{2}}\right)} \\
& =\begin{array}{l}
1.153 \times 10^{-3} \mathrm{rad} \\
\text { or } 1.153 \times 10^{-3} \mathrm{rad}\left(\frac{360^{0}}{2 \pi \mathrm{rad}}\right)=0.0661^{\circ}
\end{array}
\end{aligned}
$$

2. The tubular shaft of the motor shown below has an outer diameter of 20 mm and a wall thickness of 2.5 mm and is made of a material with an allowable shear stress of tallow $=75 \mathrm{MPa}$. Determine the maximum allowable power (in kW) that can be supplied when the shaft is operating at $1,500 \mathrm{rpm}$.

$$
\begin{aligned}
& \tau_{\max }=\frac{T c}{T} \rightarrow T=\frac{\tau_{\max } J}{c} \\
& T=\frac{\left(75 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right) \frac{\pi}{2}\left((0.010 \mathrm{~m})^{4}-(0.0075 \mathrm{~m})^{4}\right)}{0.010 \mathrm{~m}} \\
& =80.534 \mathrm{~N}-\mathrm{m}(5 \mathrm{pt}) \\
& P=2 \pi f T \\
& =\left(2 \pi \frac{\mathrm{rad}}{\mathrm{ket}}\right)\left(1.500 \frac{\mathrm{ken}}{1 \mathrm{ln}}\right)(80.534 \mathrm{~N} \cdot \mathrm{~m}) \\
& =\begin{array}{r}
12,650.2 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~s}} \\
\text { or } 12.65 \mathrm{~kW}
\end{array} \text { (5 str) }
\end{aligned}
$$

